Der 3.E-Science Day an der Hochschule Schmalkalden

Der 3.E-Science Day an der Hochschule Schmalkalden

Zum nunmehr dritten Mal wurde von der Fakultät der Elektrotechnik zum E-Science Day geladen. Ziel dieser Veranstaltung ist es zunächst, einen Überblick über die Forschungsaktivitäten an der Fakultät, also über unterschiedliche aktuelle Themen und Projekte, zu geben. Zudem werden Kooperationspartner aus der Wirtschaft und von wissenschaftlichen Institutionen eingeladen und können sich vorstellen. Ferner besteht der Zweck des E-Science Days darin, die Öffentlichkeit von der Schmalkalder Stadtgesellschaft bis hin zu jungen Menschen, die gerade auf der Suche nach einem passenden Studiengang sind, aufmerksam und neugierig auf die Forschungsthemen und -vorhaben zu machen.

Messstationen, Künstliche Intelligenz und Computerchips

Nach der Begrüßung durch die Professoren Roy Knechtel und Silvio Bachmann im Namen der Fakultät Elektrotechnik wurde der erste Vortrag von Professor  Martin Schreivogel gehalten, der an der HSM die Professur für die Grundlagen der Elektrotechnik innehat. Dieser nutzte die Gelegenheit nicht nur dazu, kurz in das Thema der Gassensorik einzuführen, sondern auch, ein Projekt zur Luftgütevermessung via kompakter Messboxen vorzustellen. Das zu lösende Problem war die Ermittlung der Luftgüte in Innenstädten: Anstelle von punktuellen Messungen ist es für eine Beurteilung zweckmäßiger, über viele, im Stadtraum verteilte Messstationen ein detailliertes und dynamisches Bild der Verteilung zu erhalten, also die Luftströme und die Effekte der städtischen Architektur mit in Betracht zu ziehen. Hierfür waren ebenso viele technische Herausforderungen der Sensorik insbesondere hinsichtlich der Kompaktheit der Geräte sowie die Kosteneffizienz zu meistern, die eine Vielzahl solcher Stationen erst möglich macht. Zudem umriss Martin Schreivogel ein aktuelles Vorhaben, das in der Optimierung bereits laufender Wasserstoffanlagen besteht. Eine der zentralen Aufgabe der Energiewende ist die Speicherung und der Transport von Energie, und eine Lösung dafür ist die Transformation in Wasserstoff. Die Forschungsfrage ist nun, wie sich die Prozesse der Elektrolyse unter Realbedingungen optimieren lassen.

Im Anschluss gaben Professorin Maria Schweigel, Inhaberin der Professur für autonome Systeme, und Lisa Schneeweiß einen Einblick in den aktuellen Forschungsstand des Projektes BauKIRo. Dieses Forschungsvorhaben findet in Zusammenarbeit mit dem Lehrstuhl FAPS der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) über eine industrielle Gemeinschaftsforschung mit dem Deutschen Beton- und Bautechnik-Verein E.V. (DBV) statt und wird vom BMWK gefördert. Die Idee hinter dem Projekt ist digitale Herstellung von Bauplänen, für deren Vermessung nicht nur Drohnen, sondern auch Applikationen genutzt werden, die auf künstliche Intelligenz zurückgreifen. Ein Zwischenergebnis besteht in der Notwendigkeit, die Drohnen, die den Baufortschritt prüfen und dokumentieren sollen, auf die spezifische Umgebung sich im Bau befindlicher Gebäude anzupassen. Hierbei geht es zum Beispiel um die Gefahr, die von herumhängenden Kabeln verursacht werden. Ein anderes Problem ist die Datenverarbeitung der Bilder, wodurch fehlerhafte Punktwolken entstehen können. Somit hat die Forschung neue Aufgaben, ihren Ansatz anzupassen und zu optimieren.

Über das von der Carl-Zeiß-Stiftung geförderte Projekt „Material innovations for wafer-level packaging technologies“ informierte Professor Roy Knechtel, Inhaber der Professur für Autonome Intelligente Sensoren. Dieses Verfahren bietet die Möglichkeit, im Vergleich zur klassischen Herstellung kleinere und kosteneffizientere integrierte Halbleiterbauelemente herstellen zu können. Üblicherweise werden die dünnen Siliziumscheiben, die Wafer, zunächst getrennt und im Anschluss in einem komplexen Prozess mit einem Umgehäuse und elektrischen sowie Montageanschlüssen versehen. Im „wafer-level packaging“-Verfahren indes werden die Komponenten schon auf dem Wafer selbst aufgebracht und eingehaust. Durch diese 3D-Integration lassen sich noch kleinere, leistungsstarke Chips herstellen, wie sie zum Beispiel für Smartphones der neueren Generationen Verwendung finden. Ein anderes Beispiel eines solchen Chips sind die Infrarot-Sensoren der Smartwatch eines namhaften Herstellers. In dem Forschungsprojekt ergeben sich zugleich enge Kooperationsmöglichen mit der Materialwissenschaft und den technischen Möglichkeiten von 3D-Druck-Systemen.

Den Abschluss des ersten Blocks machte dann der Vortrag Norbert Greifzus vom Team der „Eingebetteten Diagnosesysteme (EDS)“. Er stellte eine Kooperation zwischen der Elektrotechnik und dem Maschinenbau vor, bei dem es um den Einsatz künstlicher Intelligenz bei Verfahren des Spritzgusses geht. Kurzum können verschiedene Sensordaten und speziell trainierte Programme dabei helfen, fehlerhafte Teile zu prognostizieren und so rechtzeitige Eingriffe in die Fertigung vorzunehmen, um diesen Ausschuss zu vermeiden. Hier werden unter anderem Messungen von Temperatur und Druck verwandt und auf Basis der Verläufe vieler vorheriger Messungen bewertet. Wichtig ist hierbei zugleich, dass die Modelle der künstlichen Intelligenz das Zustandekommen ihrer Beurteilung transparent machen, um so letzter die Akzeptanz bei den Nutzenden zu erhöhen. Dies wäre zum Beispiel über eine graphische Ausgabe von Markierungen an Verlaufskurven der Temperatur oder des Drucks möglich.

Infrarotsensoren, Mikrostrukturen und 3D-Drucker

Der zweite Teil des E-Science-Days wurde mit einem online-Vortrag von Rachel Gleeson vom belgischen Unternehmen Melexis eingeläutet. Sie kooperiert in ihrer Forschung mit dem in Erfurt ansässigen Unternehmen X-FAB sowie mit Roy Knechtel. In ihrem Beitrag konturierte sie zunächst die Breite der Anwendungsmöglichkeiten von miniaturisierten Infrarotsensoren, denen über die Messung der thermischen Strahlung die präzise berührungslose und somit schnelle Ermittlung von Temperaturen möglich ist. Dieser Auffächerung zuvor ging ein Blick auf die Komplexität der Integration der Komponenten in eines Mikro-Elektro-Mechanischen Systems (MEMS) bei einer gleichzeitigen Minimierung des Platz- und Stromverbrauchs. Wichtig ist hierbei zu beachten, dass es unterschiedliche Infrarotsensoren für verschiedene Anwendungen gibt, zum Beispiel unterscheiden man Sensoren für punktuelle Messungen und bildgebende Sensorarrays. Je nach Anwendungsfeld unterscheiden sich auch die Ansprüche an Präzision: So nimmt sich die erforderte Exaktheit auf dem Gebiet medizinischer Anwendungen um einiges höher aus, als bei Produkten für Konsumenten wie zum Beispiel Fitnesstrackern oder Heimelektronik.

Die Infrarotsensoren finden in unserer Gegenwart bereits breite Verwendung: Zum einen in Geräten wie Smartphones und -watches, die so die Körpertemperatur ermitteln können. Damit ist die Health-Tech ein relevantes Anwendungsfeld, das noch an Bedeutung gewinnen wird. Ein zentraler Pluspunkt in diesem Bereich medizinischer Anwendungen ist, dass die Temperaturmessung ohne direkten Kontakt funktioniert. Andere Gebiete sind zum Beispiel die wärmesensorische Vermessung von Gebäuden, was unter anderem dem Auffinden von Stellen dient, an denen Wärme verloren geht. Ein Nebeneffekt der Vermessung über Infrarotsensoren ist, dass sie ihre Daten anonymisiert erheben, sind doch Personen detektier aber nicht identifizierbar. Dies macht die Sensoren auch für die Überwachung und Automation von Gebäuden nützlich, wie zum Beispiel bei der smarten Steuerung von Licht- oder Heizungsanlagen, die z.B. in Bürogebäuden Anwendung findet.

Stephanie Lippmann forscht an der Friedrich-Schiller-Universität Jena zu Themen der Materialwissenschaften und hat hier zurzeit eine Vertretungsprofessur für metallische Werkstoffe am Otto-Schott-Institut für Materialforschung inne. Grundsätzlich widmet sie sich Aspekten der Metallphysik, genauer thermodynamischen und kinetischen Prozessen bei mikroskopischen Strukturveränderungen der Werkstoffe während Zustandsänderungen, sogenannten Phasen­umwandlungen. Die Thermodynamik befasst sich zunächst als Teilgebiet der Physik mit Fragen der Umwandlung und Änderung von Energie innerhalb eines oder mehrerer Systeme.

Die Kinetik betrachtet die Zeitabhängigkeit, also die Geschwindigkeit, dieser Umwandlungsprozesse. Im Fokus von Stephanie Lippmanns Forschung wiederum stehen die mikrostrukturellen Prozesse in metallischen Legierungen bei besonders schnellen Phasenumwandlungen, also wenn z.B. eine Schmelze erstarrt, aber auch bei Festkörperphasenübergängen während rascher Wärmebehandlungen. Den Prozessen dieser „rapid phase tranformations“ im Material versucht sie mittels einer spezifischen Testanlage und unter besonderen Konditionen nachzugehen, die eine sehr schnelle Erhitzung und Abkühlung der Testobjekte bietet. Um diese Umwandlungsprozesse genauer zu verstehen, verwendet Stephanie Lippmann die thermo-kinetische Modellierung, mit dem Ziel, die Materialstruktur, das sogenannte Gefüge, gezielt anhand der Zusammensetzung und der Wärmebehandlung einstellen zu können. Über die Steuerung des Gefüges ist es schließlich möglich, die Eigenschaften einer Legierung für die gewünschte Anwendung zu optimieren. 

Für die Elektrotechnik ist diese Forschung der benachbarten Disziplin gerade deswegen so relevant, weil solche strukturellen Umwandlungsprozesse auch bei der Herstellung und Qualifizierung von mikroelektronischen Schaltkreisen auftreten. Ein grundlegenderes Verständnis hilft unter anderem auch die Ursachen von Mängeln im elektronischen Bauteil zu verstehen. Da in den zunehmend komplexeren, und weiter miniaturisierten Objekten die Anforderungen an die Reinheit und Zuverlässigkeit der verwendeten metallischen Komponenten immer weiter steigen, ist es hier zentral, voneinander zu lernen. Zu diesem Zweck wurde im Rahmen des bereits vorgestellten Projekts „Material innovations for wafer-level packaging technologies“ eine Kooperation zwischen Friedrich-Schiller-Universität Jena und der Hochschule Schmalkalden auf den Weg gebracht.

Den offiziellen Teil des E-Science-Day abrunden durfte Martin Hedges von der Neotech AMT GmbH aus Nürnberg, wobei die Abkürzung für Advanced Manufacturing Technologies for 3D Printed Electronics steht und sich das Unternehmen entsprechend vor allem im Bereich des 3D-Drucks von komplexen elektronischen Bauteilen einen Namen gemacht hat. Durch diese Expertise ergab sich auch die Kooperation mit der elektrotechnischen Fakultät und mit Roy Knechtel. Wie dieser schon in seiner einführenden Vorstellung klarmachte, ist eine Vision in der Elektrotechnik, ein Gerät zu haben, dass vollständige elektronische Bauteile wie Schaltungen herstellen kann. Die 3D-Drucker, die Neotech entwickelte, kommen diesem Ziel schon recht nahe.

Der 3D-Druck von elektronischen Bauteilen hat allen voran den Vorteil, ein schnelles und günstiges Prototypingverfahren  zu sein und zugleich eine Vielfalt an möglichen Formen zu gestatten. Hierbei kommt hinzu, dass die 3D-Drucker von Neotech verschiedene Verfahren des 3D-Drucks als Funktionen bieten und sich so die Anwendungsbreite durch die Kombination noch deutlich steigern lässt. Ein Beispiel der neuen Möglichkeiten war die Herstellung einer Glühbirne: Bei üblichen Glühbirnen sind neben den Materialien, die das Produkt bei der Herstellung bedarf, auch die Ressourcen einzupreisen, die das Recycling verlangt. Der 3D-Druck lässt es hier zu, beide Enden bereits im Design zu bedenken und so nachhaltige Lösungen zu ermöglichen.

Im kleineren Rahmen wurde im Anschluss in den Räumen der Fakultät Elektrotechnik die Einweihung eines solchen 3D-Druck-Systems feierlich begangen, an dem Forschenden nun den Möglichkeiten und Grenzen dieser Herstellungsverfahren nachgehen werden. Ziel ist es gemäß der Vision, eine rein additive Herstellungsweise zu entwickeln, die es erlaubt, ganze elektronische Bauteile wie Sensoren zu produzieren. Möglich machte dies eine Förderung von der Europäischen Union.

risING – Der Tag der Ingenieurwissenschaften an der Hochschule Schmalkalden

risING – Der Tag der Ingenieurwissenschaften an der Hochschule Schmalkalden

Mitte Juni durfte die Hochschule Schmalkalden den Tag der Ingenieurwissenschaften unter dem Titel „risING. Regionale Innovationen, globale Transformationen“ ausrichten. In einem ganztägigen, abwechslungsreichen Programm präsentierten sich die Thüringer Ingenieurwissenschaften zugleich sich selbst und der interessierten Öffentlichkeit. In Vorträgen konnten sich verschiedene Projekte aus Forschung und Lehre vorstellen und Nachwuchswissenschaftler:innen in einem Pitchwettbewerb beweisen. Abgerundet wurde das Programm durch eine Präsentation aller eingereichten Poster und eine Ausstellung von Kooperationspartnern im Foyer. Prägend in allen Hinsichten blieb die thüringenweite, kooperative Ausrichtung der Ingenieurwissenschaften, die auch ein Markenkern der Allianz Thüringer Ingenieurwissenschaften darstellt.

Die Allianz THÜR ING ist ein Bündnis von sieben Thüringer Hochschulen mit ingenieurwissenschaftlichen Studiengängen, das es sich zu Aufgabe gemacht hat, die Bekanntheit der Ingenieurwissenschaften in der Öffentlichkeit zu steigern. Ziel dieser Kooperation ist es zudem, junge Menschen für das Studium der Ingenieurwissenschaften zu begeistern und zu diesem Zweck die Vielfalt der Studiengänge, die Anwendungsnähe und die innovative Relevanz hervorzukehren.  Ab von vielen weiteren wissenschaftskommunikativen Offerten sind es die Tage der Ingenieurwissenschaften, die eben solche Impulse setzen sollen. Neben der Allianz THÜR ING unterstützte die Thüringer Ingenieurskammer das Organisationsteam der Hochschule Schmalkalden bei der Umsetzung des Tages, zum Beispiel bei der Bewertung der Pitches und der Preisverleihung am Ende der Veranstaltung.

Um was es geht: Die Relevanz der Ingenieurwissenschaften

In seiner Begrüßungsrede wies Professor Gundolf Baier, Präsident der Hochschule Schmalkalden und Sprecher der Allianz THÜR ING, auf die verschiedenen gesellschaftlichen Herausforderungen unserer Gegenwart hin, auf welche die Ingenieurwissenschaften innovative Antworten finden müssten und auch würden: Neben der Demographie seien dies die Digitalisierung und die Dekarbonisierung – kurz die großen D‘s. Gerade im Falle der letzten beiden Herausforderungen werden die Potentiale der Ingenieurwissenschaften deutlich: Die techno- und ökologischen Transformationsprozesse prägen bereits unsere Gegenwart und unseren Alltag von der Kommunikation über Behördengänge bis hin zu Einkäufen, und werden dies in Zukunft wohl immer stärker tun. Darüber hinaus spielen die D’s aber auch eine immer größere Rolle für die Wirtschaft und den Standort Deutschland.

Hochschulen angewandter Wissenschaften nehmen die letzten beiden Impulse gesellschaftlicher Transformationen in ihrer Forschung auf und versuchen, neben ebenso relevanten Aspekten von Grundlagenarbeiten, anwendungsnahe Lösungsansätze für Gesellschaft und Wirtschaft zu entwickeln. Diese Implementierbarkeit ihrer Forschungsarbeiten und die Arbeit an konkreten Problemen ist ein gewichtiges Pfund, die mehr in die Wahrnehmung der Öffentlichkeit gerückt werden soll.

Anlässe wie die Tage der Ingenieurwissenschaften lassen sich nutzen, um mit der Öffentlichkeit in Kontakt zu treten und diese über die Tätigkeiten und die Sinnhaftigkeit der Ingenieurwissenschaften zu informieren: Was sind die Themen der Ingenieur:innen, vor welchen Herausforderungen stehen sie und wie gehen sie mit den Aufgaben um? Welche Bereiche umfasst das ingenieurwissenschaftliche Spektrum und wie gestalten sich die internen und externen Austauschbeziehungen, zum Beispiel zu den Forschungseinrichtungen von Unternehmen? Wie lassen sich Patente einrichten, Start-Ups gründen oder Forschungsdaten in der wissenschaftlichen Community teilen? Der Tag der Ingenieurwissenschaften nutzte die Gelegenheit, um ein Licht auf diese verschiedenen Aspekte zu werfen.

risING: Impulse der Politik

Der Tag der Ingenieurwissenschaften steckte sein thematisches Portfolio bereits in seinem Titel „risING. Regionale Innovationen, globale Transformationen“ ab. Einerseits wird hierbei ein Bezug zur RIS-Strategie der Landesregierung hergestellt, die wiederum auf eine regionale Innovationsstrategie abzielt: Im Hinblick auf verschiedene Felder und thematische Komplexe rund um Zukunftsfragen wurden Akteure der Thüringer Forschungslandschaft anhand ihrer Schwerpunkte und Kompetenzen markiert. Das Ziel ist, dass die beteiligten Institutionen und Personen zu verknüpfen und den Austausch an Wissen und Expertise anzuregen, um und so schließlich die Forschung gemeinsam voranzutreiben. In Kooperationen lassen sich die Potentiale ganz unterschiedlicher Akteure und Regionen Thüringens produktiv nutzen, so die dahinterstehende Idee. In einem kleinen Bundesland wie Thüringen kann Forschung keine One-Man-Show sein, vielmehr legen die kurzen Wege eine enge, produktive Zusammenarbeit und die intensive Vernetzung nahe.

Kooperative Projekte sind in der Forschungslandschaft zwar keine neue Erscheinung, doch nimmt die Zusammenarbeit von Hochschule, außeruniversitären Forschungseinrichtungen und Partnern aus Wirtschaft und Gesellschaft immer mehr zu. Da sich so die verschiedenen Schwerpunkte unterschiedlicher Akteure einbringen und die Beteiligten die Heterogenität der Forschungslandschaft gewinnbringend nutzen können, bieten sich diese Kooperationsprojekte zur Präsentation ingenieurwissenschaftlicher Aktivitäten und deren interdisziplinärer Potentiale an.

Forschungsprojekte: Intelligente Mobilität und 3D-Elektronik-Systeme

Am Tag der Ingenieurwissenschaften konnte Professor Frank Schrödel von der Hochschule Schmalkalden die hochschulübergreifende Forschungsgruppe vernetztes und kognitives Fahren, kurz CoCoMobility, vorstellen. Neben der HSM sind die Fachhochschule Erfurt, die Technische Universität Ilmenau und die Bauhaus-Universität Weimar an diesem Forschungsprojekt zum Thema intelligente Vernetzung moderner Mobilität beteiligt. Die Vielfältigkeit der Kooperationspartner spiegelt die Differenziertheit der hier einbegriffenen Themen: Neben der intelligenten Verkehrsinfrastruktur und der Vernetzung von Fahrzeugen, Infrastruktur und Testumgebungen arbeitet die Forschungsgruppe an Effekten auf den Verkehr, Aspekten der Sicherheit sowie an Einflüssen der Umwelt.

Die Umsetzung der neuen Mobilität angefangen beim autonomen Fahren bis hin zur smarten Verkehrslenkung bedarf der Kommunikation, zum Beispiel zwischen den Mobilen und der Infrastruktur. An dieser intelligenten Konnektivität forscht der Projektpartner TUI. Die BUW fokussiert sich auf den Ablauf des Verkehrs, also Fragen der Vorhersagbarkeit und u.a. individuell als angenehm empfundener Abstände. Die Steigerung der Verkehrssicherheit vulnerabler Gruppen steht im Blickfeld der FHE. Und die HSM widmet sich der menschenzentrieten autonomen Entscheidungsfindung im Kontext der autonomen Mobilität. In diesem kooperativen Forschungsprojekt können die unterschiedlichen Partner ihre Expertise einbringen.

Professor Roy Knechtel nutzte die Gelegenheit, um den neuen Forschungsschwerpunkt 3D-Elektronik-Systeme der Hochschule Schmalkalden vorzustellen. Die Welt der Mikroelektronik ist noch heute weitgehend eine Scheibe, sind doch jene dünnen Siliziumscheiben, die sogenannten Wafer, die Grundbausteine. Dennoch lässt sich ein Trend hin zur Dreidimensionalität feststellen: Um die Funktionen moderner smarter Geräte wie Handys oder Uhren erfüllen zu können, müssen Chips, Sensoren und andere technische Komponenten in die dritte Dimension wachsen: Kurzum geht es darum, hochkomplexe Bauteile zu stapeln und zu verbinden, um so immer kompaktere, effizientere Komponenten zu erzeugen und den Erfordernissen von Funktionalität, Formfaktor, Passgenauigkeit und Rentabilität gerecht zu werden.

Das Ziel des Projektes ist die Herstellung komplexer mikroelektronischer Bauteile direkt auf dem wafer, um so auch die Wertschöpfung einer bislang recht globalisierten Industrie vor Ort halten zu können. Um die für diese Bauteile notwendige Präzision erreichen zu können, muss ein Fokus auf den Materialien und der Strukturanalyse ihrer Charakteristika liegen. Neben Martin Seyring aus dem Team von Roy Knechtel ist mit Stephanie Lippmann von der FSU Jena und dem dortigen Otto-Schott-Institut für Materialforschung im Projekt für diese Aspekte eingebunden. Aber auch Unternehmen wie X-Fab beteiligen sich als Partner aus der Wirtschaft an diesem Forschungsschwerpunkt.

Nachwuchs: Die vielen Facetten der Ingenieurwissenschaften

Am Tag der Ingenieurwissenschaften gab auch dem akademischen Nachwuchs in unterschiedlichen Hinsichten Raum: Schon vor Längerem gab es einen Call for Poster, der um Einreichungen zu innovativen Themen der Thüringer Ingenieurwissenschaften aufrief. All diese eingereichten Poster wurden im Rahmen einer Präsentation per Slideshow gezeigt und gaben während der Pausen zu Gesprächen Anlass. Zudem wählte eine Jury aus den Einreichungen zwölf aus, die dann am Tag der Ingenieurwissenschaften ihr Poster in einem Pitch vorstellen konnten. Am Ende der Veranstaltung wurden wiederum durch eine Jury, unter anderem mit Vertreter:innen der Ingenieurskammer besetzt, die besten drei Pitches ausgewählt und die Gewinner mit einem Preisgeld bedacht.

Hier ist nicht genügend Platz, alle Beiträge eingehend zu würdigen, daher muss eine Synopsis genügen. Alle Pitches werden in Bälde auf dem Youtubekanal der Allianz THÜRING verfügbar sein, alle Poster sind auf der Seite der Hochschule Schmalkalden im Bereich Forschung zu finden. Zudem werden die Präsentationen, sofern möglich, ebenso auf diesen Seiten veröffentlicht.

Martin Patrick Pauli von der Hochschule Schmalkalden verdeutlichte die Folgen des Data-Leakage-Problems, welches bei dem Training von KI-Algorithmen mit Daten auftreten kann. Letztlich kann es dabei zu überoptimistischen Annahmen der Trefferquoten und damit zu einer Verzerrung der Ergebnisse kommen. Um diese nur scheinbare Lösung zu vermieden, gilt es ebenso aufmerksam gegenüber den Daten und ihrer Aufbereitung zu bleiben wie es nützlich ist, auf verschiedene Kontrollmethoden in der Datenverarbeitung zurückzugreifen.

Christian Diegel von der Technischen Universität Ilmenau stellte in seinem Pitch ein Verfahren vor, beim dem es um eine Optimierung des Laserstrahlschweißens geht. Infolge der hohen Prozessgeschwindigkeit lösen sich aus dem Schmelzkanal Spritzer ab, die dann wieder mehr oder weniger aufwändig entfernt werden müssen. Durch die Addition einer Nebenintensivität nahe dem zentralen Laser ließe sich das Schmelzbad vergrößern und so die Dynamik des Materials verringern, wodurch es wiederum weniger Ablösungen gäbe, so der Ansatz. Durch die Einbringung von Tracer-Teilchen ins Material konnte mithilfe von Hochgeschwindigkeits-Röntgenuntersuchungen die Fluidität des Materials beobachtet und Wege zur Optimierung des Laserschweißens gefunden werden.

Tobias Tefke stellte den Aufbau eines Ethical-Hacking-Labors inklusive einer Capture-the-flag-Umgebung vor, die den Studierenden der Informatik an der Hochschule Schmalkalden helfen soll: In virtuellen Arbeitsumgebungen geht es darum, mögliche Schwachstellen in der Infrastruktur von Softwaresystemen zu finden und die Lücken in der Sicherheit zu schließen. Hier verknüpfen sich also Ansätze der Informatik und der Didaktik.

Analoger nimmt sich das Projekt von Lucas Hauck, ebenfalls von der Hochschule Schmalkalden, aus: Er geht den technischen Herausforderungen, den Möglichkeiten und Grenzen der additiven Fertigung elektronischer Bauteile im dreidimensionalen Raum nach. Der 3D-Druck besticht dabei durch ein Angebot vieler Verfahren und die mögliche Verwendung unterschiedlicher Materialien sowie die Aufbringbarkeit auf multiple Untergründe. Hauck geht diesem Komplex anhand eines 3D-Druck-Systems nach, wobei dessen Flexibilität der möglichen Verfahren das Angebot denkbarer Lösungswege vervielfacht und übersichtlich macht. Um den Aufwand individueller Ansätze zu minimieren, soll ein grundlegender Verfahrenskatalog entwickelt werden, der den Umgang mit solchen Geräten über Designregeln standardisieren und vereinfachen soll.

Wie können Drohnen und künstliche Intelligenz die Bauindustrie unterstützen? In ihrem Pitch umriss Lisa Schneeweiß das Projekt BauKiRo, das sich neben der Aufzeichnung des Baufortschritts auch dem Vergleich der realisierten Bauausführung mit dem Bauplan widmet. Dieser Kooperation der HSM mit der FAU Erlangen-Nürnberg steht vor den Herausforderungen des Einsatzes von Drohnen in komplexen Umgebungen und KI-unterstützten Auswertung von Videoaufnahmen und dem Abgleich mit vorliegenden Plänen. Der Zweck dieses Projektes ist unter anderem, Baumängel frühzeitig zu erkennen.

Sreekar Babu Malli vom ThIWert, dem Thüringer Innovationszentrum für Wertstoffe, befasst sich im Projekt SeRo.inTech mit innovativen Technologien, wertvolle Rohstoffe aus Abfällen zu gewinnen. Er stellte das Kooperationsprojekt der HSN mit der BUW am Beispiel von Sperrmüll vor: In der üblichen Entsorgung von Abfällen bleiben Teile an verwertbaren Materialien und Rohstoffen ungenutzt. Das Projekt versucht unter anderem, die die großen Bestandteile an Holz im Sperrmüll aufzubereiten. Daran schließt sich eine Verteilung der Objekte nach Qualität und möglicher Weiterverwendung an. Ziel ist es, einen möglichst abgeschlossenen Kreislauf der verwendeten natürlichen Rohstoffe zu realisieren und selbst qualitativ minderwertige Materialien nachhaltig zu nutzen.

Michael Werner von der Hochschule Schmalkalden stellte das Innovationslabor KIOptiPak vor, das wiederum ein Teil des KI HUB Kunststoffverpackungen ist. Ziel dieser Kooperation verschiedener Partner aus Wissenschaft und Wirtschaft ist es, Kunststoffverpackungen so zu gestalten, dass die Wiederverwertbarkeit maximiert und die Kunststoffabfälle von Verpackungen minimiert werden. Das KIOptiPak zielt dabei auf die Frage, wie Verpackungen designt sein müssen, um dieses Ideal eines Kreislaufs zu erreichen, zum Beispiel im Hinblick auf das verwendete Material und die direkte Einbeziehung von Vorgaben des Recyclings. Werners Interesse lag dabei auf der Qualität des wiederaufbereiteten Kunststoffreziklats und dem Umgang mit Schwankungen des Materials in der Verarbeitung. Diese Erkenntnisse sollen dann in KI-Modelle einfließen, die anhand der Vermessung des verwandten Materials schon bei laufender Produktion Angaben über die Güte und Verwendbarkeit des Produkts geben können.

Ein Thema, das Aspekte von Forschung und Transfer mit einem didaktischen Ansatz verknüpft, stellte Carsten Gatermann von der TUI vor: Ausgangspunkt war die Frage eines Schülers, ob sich eine vertikale Windenergieanlage auch in Privathaushalten installieren ließe. Neben den elektrotechnischen Fragestellungen galt es, der kreativen Neugier des Schülers Raum zu lassen: Wie müssen Projektarbeiten gestaltet werden, um den individuellen Freiraum der Forschung mit der notwendigen Unterstützung und Orientierung zu verbinden? Der Ansatz „Knowledge on Demand“ trennt Themen in Teilaufgaben, zwischen denen sich die Beteiligten immer wieder abstimmen: Weil das selbstständige Arbeiten von den Schülern erst erlernt werden muss, wird die eigenständige Forschung mit einem engen Betreuungsverhältnis ergänzt. Je nach individuellem Vermögen können dann die Aufgaben dann frei oder gesteuert angegangen werden.

Wie lässt sich der natürliche Rohstoff Holz weiter nutzen? Daniela Pachatz von der HSM stellte drei Anwendungsbeispiele aus dem Projekt FiWood vor, in dem um die Integration von Funktionen in Schichtholzprodukten geht. Ein Projekt ist ein Sitzpult, in das verschiedenen Funktionen wie eine Heizung und Sensoren (Temperatur und u.a. Luftfeuchte) eingelassen sind. Die Wärmefunktion ist auch Teil von Bodenheizelementen, die über die Abgabe von Infrarotwärme den Effekt der thermischen Behaglichkeit erreichen sollen. Nicht zuletzt lassen sich auch LED-Arrays in den Furnieren integrieren, und so leuchtende Holzelemente herstellen.

Walpola Perera von der FHE ist Teil des Forschungsprojektes Kimono-EF, das die Mobilität beeinträchtigter Menschen im Stadtraum sicherer machen will. Weil die Grünphasen von Ampelanlagen oftmals zu kurz sind, um betroffenen Menschen eine vollständige Überquerung der Straßen oder Straßenbahnschienen zu erlauben, soll hier innovative Technologie Einzug halten. Zunächst werden mit KI-optimierten Erfassungssystemen wie Kameras Personen frühzeitig ausfindig gemacht, die einen längeren Zeitraum für die Querung benötigen könnten, zum Beispiel Personen in Rollstühlen oder mit Kinderwägen. Anschließend werden die spezifischen Grünphasen verlängert und die anderen Verkehrsteilnehmer informiert. Weiter gedacht könnte mit Hilfe dieser Benachrichtigungssysteme auch eine intelligente Verkehrssteuerung autonomer Fahrzeuge ergänzt werden.

Einen Ansatz, die Photolithographie mit extremem ultraviolettem Licht zu verbessern, stellte Niranjan Kannali Ramesha von der HSM vor. Moderne Computerchips werden durch ein spezifisches Verfahren hergestellt, das sich als Buchdruck mit Licht umschreiben ließe. Auf dem Wafer, also einer Siliziumscheibe, wird eine photosensitive Schicht aufgetragen und dann durch eine Maske hindurch dem Licht ausgesetzt, wodurch sich hochkomplexe und kleine elektronische Bauteile wie Transistoren aufbringen lassen. Der bestimmende Faktor der Größe der Bauteile ist momentan die Wellenlänge des Lichts, wodurch sich der Einsatz extremen ultravioletten Lichts erklärt. Um die Produktionskapazität zu steigern, müssen kraftvollere EUV-Quellen als die bislang genutzte Variante über Zinnkügelchen gefunden werden. Das Projekt ging dem Ansatz nach, das EUV von Freien-Elektronen-Lasern wie dem FLASH als Quelle zu nutzen. Zentral ist hierbei die Frage, ob und wie sich das EUV-Licht in einem Fokuspunkt konzentrieren lässt, wofür wiederum die Erfassung der Wellenfront eine entscheidende Rolle spielt. Im Weiteren brauche es optische Systeme, die Abweichungen der Wellenfont korrigierten.

Martin Sennewald (TUI) stellte abschließend einen Aspekt des Forschungsprojektes DimFSW vor, das darauf abzielt, die Beschädigungen von Werkzeugen bei Schmelzschweißverfahren wie dem Rührreibschweißen abzuschätzen und das Aufkommen von Ausfällen von Produktionsabläufen zu minimieren. Die Fügetechnik stehe grundsätzlich vor steigenden Herausforderungen, unter anderem aufgrund wachsender Ansprüche der Bauteilkomplexität, dem Leichtbau und der Qualität. Zum Beispiel verlangt die Elektromobilität weitaus komplexe Bauteile als die bisherigen Modelle. Für die Fertigung folgen hieraus nicht nur die Wirkung hoher Prozesskräfte, sondern auch ein erhöhter Verschleiß der Werkzeuge. Wie lässt sich dieser Verschleiß so bestimmen, dass Ausfälle in laufenden Produktionsprozessen vermieden werden können? Der Ansatz ist, auf die tatsächlichen Prozesskräfte und -momente wie der vorliegenden Spannungen am Schweißstift im Prozess zurückzugreifen, wobei diese aus den Kraft-/Drehmomentdaten gewonnen werden.

Nachhaltigkeit und Netzwerke, Daten und Patente

Neben diesen konkreten Forschungsvorhaben gab der Tag der Ingenieurwissenschaften auch Projekten Raum, die Forschung und Lehre strukturell verbessern wollen. Mit ThüLeNa präsentierten die Professoren Frank Pothen (EAH) und Matthias W. Schneider (HSM) ein jüngst gestartetes Projekt, das sich dem Aspekt der Nachhaltigkeit im Lehren und Lernen widmet und dies stärken will. Dieser Nachhaltigkeitsgedanke umfasst Aspekte der Entwicklung neuer Technologien ebenso wie eine soziale und ökologische Verantwortung sowie die Einholung sozialer und ökonomischer Akzeptanz. Das Ziel von ThüLeNa ist es, die Ingenieurwissenschaften auf diese Herausforderungen auf verschiedenen Ebenen vorzubereiten und die Transformation produktiv zu begleiten, und zum Beispiel die Nachhaltigkeit in Lehrformaten zu integrieren und bereits vorhandene Strukturen und Kompetenzen zu stärken.

Wie lässt sich die Forschung und Entwicklung in Thüringen kooperativ verknüpfen? Das Thüringer Zentrum für Maschinenbau nimmt sich dieser Aufgabe an, wie Dr. Andreas Patschger in seinem Vortrag deutlich machte. Das ThZM ist eine Kooperation aus fünf Forschungseinrichtungen, u.a. der TUI und der HSM, das sich neben wirtschaftspolitischen Impulsen vor allem dem Wissens-Transfer hin zu kleinen und mittleren Unternehmen verschrieben hat. Es geht also darum, gefundene Lösungen in die Anwendung zu bringen und hierzu Institutionen der F&T mit den zentralen Akteuren, also Unternehmen, in Kontakt zu bringen. Beide Seiten können hierbei voneinander lernen. Ein weiterer Ansatz des ThZM ist zudem die Netzwerkarbeit, um die Akteure in Austausch zu bringen, zum Beispiel in Formaten wie der Cross-Cluster-Initiative Thüringen. Hierin tauschen sich kleine und mittlere Unternehmen über ihre Erfahrungen, Bedarfe und gemeinsamen Interessen aus, was zukünftigen Kooperationsprojekten ebenso den Weg ebnet wie es den Partnern einen Überblick in geteilte Problemlagen erlaubt. Nicht nur können die Beteiligten so von best-practise-Beispielen profitieren, sondern auch mögliche Kooperationspartner in der Nachbarschaft kennengelernt werden.

Eine andere Frage ist die der Forschungsdaten, wobei hier nicht nur an die Statistiken empirischer Sozialwissenschaften zu denken ist, sondern auch an die massiven Datenmengen, die zum Beispiel im Maschinenbau per Sensoren an den Werkzeugen erhoben werden. Da diese Informationen mit viel Aufwand gewonnen werden, ist es sinnvoll und von einem allgemeinen wissenschaftlichen Interesse, die erhobenen Daten zu teilen, im Kreise der Wissenschaft oder auch in der Öffentlichkeit. Um Wissenschaftler:innen bei diesen Projekten zu unterstützen wurde mit dem FDM-HAWK eine Initiative des Forschungsdatenmanagement ins Leben gerufen, deren Mitarbeiter:innen auf verschiedenen Feldern helfen können. Wie Sarah Boelter (EAH Jena) hervorhob, fängt dies bereits bei grundsätzlichen Dingen wie dem Datenschutz- und der -sicherheit an, geht über den planvollen Umgang mit Daten und ihrer Erhebung schon im Vorfeld und reicht bis in Detailfragen wie den passenden Metadaten, verlässlichen Plattformen und den kompatiblen Formaten der entsprechenden Daten.

Ein anderer Punkt sind die Patente: Jan Axel Schleicher gab einen Einblick in seine Tätigkeit und die Aufgabe von PATON, dem Landespatentzentrum Thüringen. Letztlich ist es das Ziel, unter anderem Wissenschaftler:innen dabei zu unterstützen, Patente zu beantragen und die verschiedenen Fallstricke einer solchen Anmeldung zu vermeiden. Welche Kriterien müssen erfüllt werden, um ein Patent anmelden zu können? Hier ist unter anderem an den Stand der Technik zu denken, dessen Mängel und das Potential der Erfindung, wobei hier wiederum zwischen der Aufgabe und der Lösung der Erfindung geschieden werden kann. Nicht zuletzt stellte Schleicher den Ablauf einer Patentanmeldung vor, um eventuell Betroffenen eine Orientierung zu geben.

Sven Uwe Büttner vom StarterWerk gab einen Überblick über die Dos and Don’ts von Existenzgründungen: Was braucht es eigentlich, um erfolgreich von einer Idee zu einer Unternehmung zu gelangen? In das Zentrum stellte Büttner das kreative, engagierte Individuum, das eine Idee verwirklichen will. Neben der Definition einer Baseline, der Perzeption des Marktes und der Interessen potentieller Kund:innen ging es um die Nutzung wichtiger Kontaktnetzwerke und die Fokussierung gepaart mit einer Offenheit, die den Weg zum Ziel nicht weniger gerichtet, nur etwas breiter werden lässt.

Ein Fazit

Am Ende des Tages konnten die Gäste, die Referierenden und das Organisationsteam auf einen erfolgreichen, informativen Tag der Ingenieurwissenschaften zurückblicken, der verschiedene Aspekte der Thüringer Ingenieurwissenschaften beleuchtete und der zugleich ebenso für die Öffentlichkeit wie für Wissenschaftler:innen lohnenswerte Inhalte bereithielt.

Die Veranstalter wollen zum Abschluss allen Beteiligten danken, die im Vorfeld oder am Tag selbst mit ihrem Engagement für das Gelingen beitrugen.

Drucken mit Licht – Über die Potentiale der Fotolithografie

Drucken mit Licht – Über die Potentiale der Fotolithografie

Um immer kleinere und effizientere Mikrochips produzieren zu können, müssen permanent neue Wege beschritten und Technologien erforscht werden. Gegenwärtig sind es spezielle Verfahren der Fotolithographie, in welchem Halbleiter mit Hilfe von extremem ultraviolettem Licht hergestellt werden, die entscheidende Potentiale versprechen. Auch wenn der technische Aufwand dieser Methode immens ist und eine lange Zeit der Forschung und Entwicklung bedurfte, bietet sie enorme Chancen für die Fertigung von hochkomplexen Bauteilen. An der Hochschule Schmalkalden will sich Professor Christian Rödel, vor kurzem auf die Professur für Physik und angewandte Lasertechnik berufen, diesem Gebiet in Forschung und Lehre widmen.

Um den praktischen Nutzen der Mikroelektronik und die Fortschritte der letzten Dekaden erkennen zu können, genügt ein Blick in unsere Hosentaschen: Auch wenn die Smartphones mittlerweile aus dem Alltag nicht mehr wegzudenken sind, ist es doch erstaunlich, was die kleinen Geräte gerade im Hinblick auf ihren noch jungen Ursprung vermögen. Da der technische Fortschritt ein stetiger Prozess der Innovation ist, sucht die Mikroelektronik weiter nach Mitteln und Ansätzen, Bauteile zu verkleinern bzw. komplexer gestalten zu können. Ein Weg dahin sind fotolithographische Methoden, bei denen Chips mit Hilfe von Lasern fotolithografisch hergestellt werden. Einerseits bieten sich im Rückgriff auf das extreme ultraviolette Licht spezifische Vorteile gerade für die Miniaturisierung elektronischer Bauteile, andererseits haben diese Verfahren in ihrer Anwendung hohe technische und praktische Voraussetzungen.

Die Forschung in diesem Bereich wurde in letzten Dekaden vor allem durch ein Unternehmen aus den Niederlanden vorangetrieben: Vor nunmehr dreißig Jahren begann hier die Erforschung der technischen Grundlagen und führte zur Entwicklung einer Apparatur, die heute zu den komplexesten und teuersten Systemen gehört und die ASML zu einem der wertvollsten Unternehmen der Welt gemacht hat. Der Vorsprung im Bereich von Forschung und Entwicklung, den sich ASML erarbeitet hat, beruht auf einer langfristigen Spezialisierung, die selbst noch die Zulieferfirmen umfasst. Im Moment ist nur diese Firma in der Lage, Anlagen herzustellen, die Fotolithographie mit extremem ultraviolettem Licht verwenden. Die Produktion modernster Chips ist in der Folge von diesem einen Anbieter abhängig, was letztlich sogar geopolitische Komplikationen nach sich zieht.[1]

Schreiben mit Licht

Lithographie ist ursprünglich ein Flachdruckverfahren, was meint, dass der Druck nicht über eine vertieft oder erhaben gearbeitete Zeichnung auf der Druckplatte erfolgt, sondern die druckenden und nichtdruckenden Partien auf einer Ebene liegen. Die Maske wird hierbei durch eine Versiegelung der Steinplatte aufgetragen, wobei das Prinzip auf der Unmischbarkeit von Fett und Wasser basiert. Während die druckenden Partien die fettreiche Druckfarbe aufnehmen, werden die nichtdruckenden Stellen mit einem Wasserfilm befeuchtet und stoßen die Druckfarbe ab. Im Falle der Fotolithographie wird dieses Prinzip durch Licht und lichtreaktive Substanzen umgesetzt. Kurz gefasst wird eine hauchdünne Siliziumscheibe, Wafer genannt, mit einem Licht-empfindlichen Fotolack beschichtet und anschließend mittels einer kurzzeitigen Strahlung über eine Maske belichtet, wodurch sich die Chemie des Lacks verändert und die Muster übertragen werden. Durch Wiederholung dieses Prozesses entstehen komplexe 3-dimensionale Strukturen – die Mikrochips. Auch wenn dieses Verfahren schon eine längere Zeit eine übliche Methode in der Herstellung von Microchips war, verändern sich durch die EUV-Lithographie die Rahmenbedingungen und Möglichkeitsräume.

Der Grad an Präzision, den diese Maschine verlangen, lässt sich fast nur in der Prosa von Superlativen Ausdruck verleihen. Ein Beispiel: Die Laser sind so genau, dass sie es erlauben würden, von der Erde aus eine Münze auf der Mondoberfläche zu treffen. Es geht hier darum, komplexe elektronische Bauteile im Nanometerbereich zu bauen, wobei sich verschiedene physikalische und optische Herausforderungen kombinieren. Um sich die Größenordnung auch nur annähernd vorstellen zu können: Wir sprechen hier von dem Tausendstel eines menschlichen Haars. Hier wurde nun das Licht selbst zum Problem: Um auf dieser Ebene arbeiten zu können, reicht die Qualität des Lichts der üblichen Laser aufgrund der Wellenlänge nicht aus.

In diesem Vorlesungsexperiment soll Studierenden die vergrößernde Abbildung eines Maßstabs näher gebracht werden. In der Fotolithografie wird vom Prinzip her ähnlich eine Maske auf einen Siliziumwafer mit Fotolack abgebildet.

Das Unsichtbare nutzbar machen

Warum also der Rückgriff auf das extreme ultraviolette Licht? Licht ist bekanntlich eine elektromagnetische Welle und besitzt charakteristische Wellenlängen, die wiederum die Bedingungen ihrer Anwendung vorgeben. Kürzere Wellenlängen lassen das Schreiben kleinerer Strukturen zu, pointiert formuliert. Um ein lebenspraktisches Beispiel zu bemühen: Auch wenn sie von identischer Größe sind, unterscheidet sich der Wellenlängenbereich der schreibenden und lesenden Laser von CD´s und Blu-Ray´s, wodurch vielmehr Daten auf das BD-Medium geschrieben werden können. Das ultraviolette Licht, das außerhalb der menschlichen Wahrnehmbarkeit liegt – außer indirekt im Falle des Sonnenbrandes –, hat eine sehr niedrige Wellenlänge. Extremes ultraviolettes Licht hat eine Wellenlänge von 13,5 Nanometer und liegt damit weit außerhalb des Bereichs menschlicher Perzeption. Dieses extrem ultraviolette Licht wird benötigt, um die Miniaturisierung voranzutreiben und kleinere Strukturen und Integrationsdichten in einer Größenordnung von unter 15 Nanometer realisieren zu können.

Um mit diesem Licht arbeiten zu können bedarf es allerdings einiger Vorkehrungen: Da dies Licht sehr leicht absorbiert wird, muss die gesamte Belichtung mit EUV-Strahlung im Vakuum vollzogen werden. Zudem können keine Linsen verwandt werden, wie es üblicherweise mit Lasertechnologien in Verbindung gebracht wird, vielmehr funktioniert die Bündelung des Lichts über hochpräszise Spiegel, deren Herstellungsprozess für sich schon höchst anspruchsvoll ist.

Auch wenn die Forschung an der Nutzung des extremen ultravioletten Lichts schon länger weilte, gelang erst Mitte des letzten Jahrzehnts ein entscheidender Durchbruch: Indem man flüssiges Zinn als Lichtquelle nutzen konnte, wurde die Schwelle zur Massenproduktion überschritten, durch die sich die Anschaffung einer solchen Maschine überhaupt erst lohnt. Das Zinn wird dabei als Tropfen in der Maschine mit einem Laserpuls beschossen, wodurch die Kugel die Form eines Eierkuchens annimmt. Im Anschluss wird das Zinn von einem stärkeren Laserpuls nochmals beschossen, wodurch dann das EUV-Licht entsteht und über verschiedene Spiegel zur Maske und dann zum Wafer geführt wird. Erst durch dieses Verfahren wurde die Produktion von Computerchips in Masse möglich und die EUV-Lithographie rentabel. Im Angesicht der Preise der Apparaturen zwischen 185 und 360 Millionen Euro muss sich die Anschaffung lohnen. Daher bedarf es eines hohen Outputs und einer verlässlichen Produktion, was wiederum die beständige Weiterentwicklung nahezu aller Komponenten der Maschine umfasst.

Partnerschaften, Forschung und Lehre

In Anbetracht der Komplexität dieser Technologie lässt sich erahnen, wie viele Wissenschaftlter:innen an ihrer Erforschung beteiligt waren und nunmehr damit beschäftigt sind, sie weiter zu verbessern. Zugleich macht die Komplexität eine Konzentration notwendig. An der Hochschule Schmalkalden möchte sich Prof. Christian Rödel mit der spektralen Charakterisierung von EUV-Quellen und Komponenten beschäftigen, die in der EUV-Lithografie eingesetzt werden können. Das sind zum einen dünne Filterfolien, aber auch EUV-Spiegel, die aus vielen Nanometer-dünnen Schichten bestehen.

Um Komponenten testen und optimieren zu können, die in der EUV-Lithographie und der Inspektion eingesetzt werden, wurde an der an der Hochschule Schmalkalden, gefördert durch Mittel der Carl-Zeiss-Stiftung, das Projekt EUV-4-LITHO ins Leben gerufen. Mit Unterstützung von Kooperationspartnern aus der Region bis ins europäische Ausland wird Professor Rödel und sein Team ein hochauflösendes EUV-Spektrometer entwickeln, mit dem sich die Vielschichtsysteme der Spiegel und ihre Eigenschaften der Reflektivität mit bisher unerreichter Präzision vermessen lassen.

Das Reflexionsgitter aus dem Vorlesungsexperiment spaltet das weiße Umgebungslicht in die spektralen Bestandteile auf. Im Projekt EUV-4-LITHO soll ebenso ein Reflexionsgitter eingesetzt werden, um die EUV-Strahlung spektral zu charakterisieren.

Auch wenn die EUV-Lithografie eine innovative Technologie der Gegenwart ist, lassen sich hier Forschung und Lehre verbinden. So entstand zum Beispiel im Projekt EUV-4-LITHO bereits eine Masterarbeit und es wurde eine Exkursion zum DESY, dem Deutschen Elektronen-Synchrotron, unternommen, um hier Untersuchungen mit EUV-Strahlung von Freien-Elektronen-Lasern vorzunehmen. Neben der Lehre steht für Professor Rödel die Kooperation im Fokus seiner Arbeit an der Hochschule für angewandte Wissenschaften. Neben den mannigfaltigen Projektpartnerschaften geht es ihm auch im die konkrete Vernetzung vor Ort, zum Beispiel der Verknüpfung von Forschungsthemen des Maschinenbaus und der Elektrotechnik. Dabei liegt im auch die Präzisionsmesstechnik am Herzen, die im Maschinenbau eingesetzt wird.


[1] Wer sich über diesen Aspekt informieren möchte: Chris Miller, Chip War. The Fight for the World’s Most Critical Technology, New York 2022.

* Das Beitragsbild zeigt ein Vorlesungs- und Praktikumsexperiment, in dem die charakteristischen Linien einer Natriumdampflampe bei 589 nm mit einem Reflexionsgitter spektral untersucht werden. Eine Xenon-basierte EUV-Lichtquelle soll an der Hochschule Schmalkalden entwickelt werden, die in ähnlicher Weise bezüglich des Spektrums bei 13,5 nm untersucht werden soll.

Künstliche Intelligenz – Potentiale und Hürden in der Anwendung

Künstliche Intelligenz – Potentiale und Hürden in der Anwendung

Der Begriff „Künstliche Intelligenz (KI)“ kann, je nach sozialer Prägung, bei jedem Leser oder Leserin eine andere Assoziation auslösen. Je nach Alter, Interessen oder auch technischer Begeisterung kann sich der ein oder andere an unterschiedliche Computerspiele, Filme oder auch Bücher mit verschiedenen Arten an KI aus seiner Kindheit erinnern. Somit tragen Science Fiction oder allgemeiner die Kulturindustrie jeder Dekade ganz eigene Bilder artifizieller Intelligenz: Ob wir an das sprechende Auto „KITT“ aus der Knight Rider, selbst steuernde Raumschiffe oder humanoide Roboter, wie „Data“, aus der Serie Star Trek oder an künstlichen Neuronalen Netzen (KNN), Deep Learning (DL) oder ChatGPT als Large Language Model (LLM) denken, kann man nur schwer, durch aufwendige Umfragen oder persönliche Gespräche herausfinden. In vielen Narrativen unserer Gegenwart kommt noch die Tendenz einer globalen Dominanz hinzu, die Seitens autonom agierender Roboter, Programme oder Netzwerke ergriffen oder zumindest angestrebt wird. Dies mag einen Grund in der steigenden Verbreitung smarter Geräte und der umfassenden Digitalisierung sowie der Abhängigkeit unserer Alltagsroutinen von diesen Technologien haben. All diesen Bildern der Künstlichen Intelligenz ist dabei gemein, dass sie zu der realen Version nur überschaubar viele Parallelen aufweisen.

In der banalen Wirklichkeit verliert die KI zwar viel von den popkulturellen Etiketten zwischen Idealisierung und Dämonisierung, sie gewinnt aber zugleich an praktischen Nutzen. Um zu verstehen, was Künstliche Intelligenz ist, worin ihre Potentiale und Schwächen im Allgemeinen wie im Besonderen liegen und was letztlich ihr Nutzen ist, muss also zunächst von den Zerrbildern Abstand genommen werden, auch wenn sie sich durchaus als Einstieg in Ausführungen wie diese eignen.

Künstliche Intelligenz (KI)

Künstliche Intelligenz lässt sich am ehesten als ein Werkzeug beschreiben, das bei der Verarbeitung von Daten den Menschen Hilfestellung leisten soll. Der Bereich der KI ist eine Untergruppe aus dem Forschungsgebiet des Maschinellen Lernens (ML). Beide Begrifflichkeiten lassen sich meist nicht scharf von einander trennen und gehen fließend in einander über. Für beide Themenkomplexe kann jedoch gesagt werden, dass in der Vergangenheit die Herausforderungen in den Fragestellungen „Wie komme ich an Daten?“, „Welche Sensoren kann ich einsetzen?“ oder „Wie kann ich diese Daten auswerten?“ zutreffend waren. Die aktuellen Fragestellungen gehen eher in die Richtung: Wie kann ich diese Mengen an Daten komprimieren, auswerten oder die Entscheidung nachvollziehen? Hier kommen dann Begrifflichkeiten wie z.B. Big Data, Dimensionsreduktions-Algorithmen oder erklärbare KI (englisch explainable artificial intelligence (XAI)) zum Einsatz.

Das Forschungsgebiet der großen Datenmengen (Big Data) ist ursächlich aus der großen Verbreitung an Sensorik oder Informationsquellen entstanden. Heutzutage besitzen fast alle Menschen auf der Welt eine Smart Phone oder PC. Infolge der Möglichkeit, kostengünstige Mikroelektronik oder Sensorik herzustellen, gibt es eine Unmenge an potentiellen Datenquellen, welche die Menschen bei einer Auswertung oder Bewertung überfordern können. Hierfür müssen effiziente und schnelle Algorithmen entwickelt werden, welche es dem Menschen in annehmbarer Zeit ermöglichen, komplexe Zusammenhänge in den Daten zu erkennen und auch verstehen zu können. Die somit entstehenden komplexen Programme sind durch die hohe Rechenleistung in der Lage, Daten maschinell zu erfassen, Muster und Strukturen sowie unter anderem Synchronitäten, Parallelen und Divergenzen von Prozessen zu erkennen und zu verknüpfen. So lassen sich mehr und mehr Informationen aus den großen Beständen an Daten ziehen und für nachlaufende Erklärungen, tiefere Verständnisse des Gegebenen und vorlaufende Abschätzungen der möglichen Zukunft nutzen. Gerade weil die Vermessung unserer Welt durch Sensoren in Geräten z.B. Smartphones oder auch modernen Automobilen immer weiter voranschreitet, wächst ein Fundus an Wissen, der produktiv genutzt werden kann.

Zugleich ist es angebracht, nicht von der einen Künstlichen Intelligenz zu sprechen, sondern dies eher als Sammelbegriff verschiedener, teils recht unterschiedlicher Formen von KI zu verstehen. Künstliche Intelligenz umfasst diverse Verfahren der Datenverarbeitung, die sich für unterschiedliche Kontexte, Fragenstellungen und Materialien eignen. Es verhält sich also so wie bei vielen anderen angewandten Wissenschaften: Es gibt nicht ein generelles Verfahren, sondern verschiedene Ansätze mit unterschiedlichen Charakteristika. Zum Beispiel können KI-Modelle, die sich für Bildererkennung eignen, nicht für Sprachprogramme wie Chat GPT verwendet werden.

Damit ist auch schon eine Schwäche in der Nutzung von KI angesprochen: Nicht alle Modelle eignen sich für jede Anwendung. In anderen Worten muss für die Aufgabe, gerade wenn sie einem speziellen Zweck dient, zunächst das passende Verfahren gefunden und mit passenden Daten angelernt, getestet oder nachtrainiert werden. Die Nutzung der KI-Modelle ist demzufolge keine one-fits-all-Lösung, sondern bedingt einen Anpassungsprozess. Für manche Aufgaben eigen sich z.B. Unscharfe Regelwerke (Fuzzy Modelle), Support Vektor Maschinen (SVM) oder künstliche neuronale Netze, welche sich an der Funktionsweise des Informationsaustausches zwischen menschlichen Nervenzellen anlehnen.

Bilder und Werkzeuge

Die Komplexität dieser Anpassung könnte an Komplikationen bei der Bilderkennung klarer werden, wobei hier noch ein epistemologisches Problem auftritt. Digitale Bilderkennungsverfahren arbeiten mit zweidimensionalen Objekten, denen also die räumliche Tiefe fehlt. Diese muss gewissermaßen als Vorder- und Hintergrund wieder in das Bild hineingelesen werden: Die Dreidimensionalität, die distinkten Objekte und selbst der Fokus müssen demnach erst erarbeitet werden. Was die Programme vor Herausforderungen stellt, ist dem Menschen schon in seinem Zugang zur Welt quasi natürlich gegeben. Gerade weil die eigentliche Objekterkennung und -unterscheidung fundamentale Aufgaben sind, können hier spannende Probleme entstehen: Ein gerne gebrachtes Beispiel ist die aus der Literatur bekannte Methode der One-Pixel-Attack[1]. Hier kann die maschinelle Bewertung durch ein Bilderkennungsalgorithmus, durch die Änderung eines einzigen Pixels in einem Pferdebild zu einer Fehlklassifikation zu ein Frosch führen. Die Funktionsweise der KI-Modelle ist also noch nicht perfekt, auch wenn sich ihre Güte – man denke nur an die Gesichtserkennung von Smartphone-Kameras – in den letzten Jahren kontinuierlich verbessert hat.

Was meint es nun, von der Künstlichen Intelligenz als Werkzeug in der Industrie zu sprechen? Stellen wir uns einen Produktionsprozess von Plastikteilen vor: Wir haben auf der einen Seite die vielen kleinen Plastikkügelchen am Anfang, die aufgeschmolzen und in eine bestimmte Form gebracht werden, um zum Ende als gefertigtes Teil aus der Maschine entnommen zu werden. Was zunächst wie ein idealer, unendlich wiederholbarer Vorgang erscheint, hängt im Alltag der Produktion von vielen Faktoren ab. Die Erfahrung von Mitarbeitern und Mitarbeiterinnen mit den Maschinen und Materialien ist hier für den Produktionsprozess zentral, und wird es absehbar bleiben. Eine hilfreiche Komponente kann aber zugleich eine Sensorik sein, die unter anderem Parameter wie Temperatur und Druck permanent misst und eine erste Auskunft über die erwartbare Güte der produzierten Teile zum Beispiel durch eine Ampel gibt, bzw. vor wahrscheinlichen Fehlern warnt und Anpassungsvorschläge liefert.  Für solche in den Produktionsprozess integrierten Beurteilungen ist nicht eine Messung entscheidend, sondern ein Zusammenspiel verschiedener Werte und Schwellen sowie unterschiedlicher, teils zusammenhängender Verläufe, wodurch sich dynamische Verarbeitungssysteme wie KI-Modelle anbieten. Moderne Sensoren sind nicht nur hochempfindlich, sie können auch an Punkten angebracht werden, die dem Menschen während der Produktion nicht zugänglich sind. Der Mensch wird hier also nicht ersetzt, sondern durch die Technik unterstützt. In verschiedenen Forschungsprojekten wie z.B.: „Powermoulds“, „Wasabi“ oder auch „SMoSys“ arbeiten Manuel Schneider und Norbert Greifzu aus dem Team der „Eingebetteten Diagnosesysteme (EDS)“ von Professor Andreas Wenzel an solchen Lösungen für eine smarte Industrie und dem Einsatz vom KI an anwendungsnahen Problemstellungen. Die Forschungsgruppe EDS ist Teil einer Hauptforschungsrichtung „Adaptiven Signalanalyse“ der Hochschule Schmalkalden. Interessante Veröffentlichungen der Forschungsgruppe sind:

Literaturverzeichnis

[1]N. Greifzu, M. Schneider, M. Werner, N. Fränzel, A. Wenzel und C. Walther, Bewertung von Produktionsprozessen mit Verfahren der Künstlichen Intelligenz, 2020.
[2]M. Schneider, N. Greifzu, L. Wang, A. Wenzel, L. Pu und C. Walther, „An end-to-end machine learning approach for time series with varying lengths,“ Neural Computing and Applications, Nr. 10.1007/s00521-024-09473-9, 2024.
[3]H. Siebald, F. Pforte, B. Kulig, M. Schneider, A. Wenzel, M. Schweigel, J. Lorenz, H.-H. Kaufmann, J. Huster, F. Beneke und O. Hensel, „Referencing acoustic monitoring of cutting knives sharpness in agricultural harvesting processes using image analysis,“ Biosystems Engineering, Bd. 226, Nr. 10.1016/j.biosystemseng.2022.12.007, p. 86–98, February 2023.
[4]D. Schneider, M. Schneider, M. Schweigel und A. Wenzel, „Application of various balancing methods to DCNN regarding acoustic data,“ Proceedings 30. Workshop Comupational Intelligence, Nr. ISBN: 978-3-7315-1051-2, November 2020.
[5]M. Schneider, N. Greifzu, C. Walther und A. Wenzel, „Übertragung von anwendungsnahen Problemstellungen des Maschinellen Lernens aus der Forschung in die Lehre,“ Berlin Journal of Data Science, Bd. 1, February 2020.

[1] https://arxiv.org/pdf/1710.08864.pdf

Sensoren, Netzwerke und Daten. Über die Forschungsprojekte Martin Schreivogels

Sensoren, Netzwerke und Daten. Über die Forschungsprojekte Martin Schreivogels

Professor Martin Schreivogel hat seit letztem Jahr die Professur für die Grundlagen der Elektrotechnik an der Fakultät Elektrotechnik der Hochschule Schmalkalden inne. Demgemäß widmet er sich prinzipiellen Fragestellungen der Elektrotechnik, hier verstanden als ingenieurwissenschaftliche Disziplin, die sich ebenso mit der Forschung und Entwicklung wie der Produktion und Instandhaltung von elektrischen Anlagen und Geräten befasst. Um eines direkt klarzustellen: Wie an Hochschulen angewandter Wissenschaften üblich genügt sich auch die Forschung Martin Schreivogels nicht mit abstrakten, theoretischen Konstrukten, sondern sucht nach Wegen der Übersetzung von Forschung in Praxis – wie unter anderem der funktionalen Optimierung elektrochemischer Sensortechnik.

Um die Relevanz dieser Disziplin zu umreißen wird im Folgenden eine Rück- mit einer Vorschau kombiniert: Zunächst soll es um die Entwicklung kompakter Messboxen gehen, mit denen die Luftqualität, zum Beispiel im Straßenverkehr verdichteter Innenstädte, vermessen werden kann. Nach diesem Rückblick auf ein weitestgehend abgeschlossenes Projekt soll es um die Konturierung eben jener Vorhaben gehen, denen sich Professor Schreivogel an der Hochschule Schmalkalden widmen möchte.

Professor Martin Schreivogel bei seiner Antrittsvorlesung

Die Vermessung der Luft: Über die Entwicklung kompakter, vernetzter Messstationen der Luftqualität

Die öffentliche Diskussion um die gesteigerte Schadstoffbelastung an hochfrequentierten Straßen und Kreuzungen, aus der die Einrichtung von innerstädtischen Umweltschutzzonen und – in manchen Arealen – sogar Fahrverbote resultierten, liegt noch nicht allzu lange zurück. Auch wenn das Ansinnen einer gesunden, nicht von Schadstoffen belasteten Umwelt gewiss auf allgemeine Zustimmung treffen sollte, verlor die damalige Debatte aufgrund der wechselseitigen Polarisierung der diskutierenden Gruppen das Gros ihres konstruktiven Potentials. Weiterführend gerade in einem ingenieurwissenschaftlichen Horizont ist indes das öffentliche Interesse, die Schadstoffbelastung und die Effekte des Stadtverkehrs und des Verkehrsinfrastruktur auf eben diese zu eruieren und adäquate Lösungsvorschläge zu entwickeln: Wo und wie entstehen also hohe Konzentrationen an Schadstoffen und wie lässt sich ihre Ansammlung vermeiden?

Ein technisches Problem, das den Diskussionen der Konsequenzen eventuell gefährlicher Luftverschmutzung und mittel- und langfristigen verkehrsplanerischen und städtebaulichen Antworten vorausliegt, besteht in der Frage, wie wir überhaupt die Luftqualität messen. Hierbei geht es nicht nur um die Zweckmäßigkeit der verwandten Sensoren, die in Frage stehenden Variablen oder die Definition zumutbarer Grenzwerte, sondern auch um die Abwägung, wo und wann gemessen werden soll. Reicht es für eine konzise Beschreibungen der Luftverschmutzung der Verkehrswege der Innenstädte hin, an einigen wenigen, aber besonders befahrenen Straßen zu messen? Oder bedarf eine verallgemeinerbare Ermittlung ein anderes Vorgehen und die Berücksichtigung weiterer relevanter Faktoren?

Auch wenn die besondere Belastung der Anwohnenden nicht in Abrede gestellt werden soll, ist die Generalisierung der Hotspot-Messungen auf das ganze Gebiet einer Stadt mit Vorsicht zu genießen. Durch die Selektivität der Messungen werden allenfalls die Maximalwerte an einem bestimmten Punkt zu einer bestimmten Zeit ermittelt, wobei sich die Luftqualität schon an einer Nebenstraße deutlich von den Messungen am Hotspot unterscheiden kann. Die Ermittlung der allgemeinen Situation der Luftverschmutzung und Erarbeitung passender Lösungsvorschläge verlangt ein anderes Vorgehen: Um Verzerrungen zu vermeiden und ein detailliertes sowie zugleich dynamisches Bild der Verschmutzung zu zeichnen ist es eher zielführend, eine größere Menge von Messstationen weitflächig über die Stadt hinweg zu verteilen und in einem Netzwerk zu verknüpfen. So lässt sich das gezeichnete Bild differenzieren und zugleich die Bewegung der Luft, die Effekte der Architektur der Stadt auf ihre Strömung, mit in die Rechnung einbeziehen.

Smarte Boxen, vernetzte Systeme

Dem bisherigen Problem solcher Netzwerklösungen hat sich Professor Martin Schreivogel angenommen: Ihm ging es darum, eine präzise und kompakte Messstation zu entwerfen, die sich zugleich kosteneffizient ausnimmt. Gerade der hohe Preis der bislang üblichen Messstationen ließ eine Anschaffung in den hierfür notwendigen Mengen nicht zu. Um eine differenzierte Messung der Luftverschmutzung durchführen zu können, bedurfte es in einem ersten Schritt also erschwinglicher Messinstrumente, ohne dabei zu große Abstriche an der Präzision machen zu müssen. Als Referenz der Messqualität konnten dabei die Ergebnisse bisher gebräuchlichen Messstationen genommen werden.

Ein früher Entwurf einer Box für die Ermittlung der Luftgüte (Bild via Bosch)

Die ersten Versuche zeigten zum Teil signifikante Unterschiede zwischen beiden Typen an Messstationen, deren Differenz sich auch nicht über naheliegende Korrekturverfahren begradigen ließen. Das Problem bestand darin, dass sich die Sensorsignaländerung durch Feuchte- und Temperaturschwankungen oft um einiges größer ausnahmen, z.B. als das eigentliche, hierfür relevante NO2-Signal. Folglich war es die Frage, welche Ursachen die Abweichungen hatten. Auch wenn die Boxen schon aus Gründen der Kosteneffizienz möglichst einfach aufgebaut waren, sind sie dennoch hochkomplexe technische Instrumente aus verschiedenen Sensoren und Komponenten, bei denen vorab nicht ausgeschlossen werden konnte, dass sie die Verzerrung zu verantworten hatten. So könnte es z.B. durch eine Überkompensation bei der Korrektur/Verrechnung verschiedener Signale kommen. Zudem war es ebenso offen, ob ein einzelner Faktor zu den Abweichungen führte oder das Zusammenspiel mehrerer Elemente, wie die Frage, welche Rolle Einflüsse der Umgebung spielten.

Um sich dem Problem anzunähern, wurde auf Messungen in einem Klimaschrank zurückgegriffen, der gesteuerte Simulationen von Umweltbedingungen zulässt. Feststellen ließ sich dabei eine Auswirkung von Veränderungen der Temperatur und Luftfeuchte auf die Messeinheit, wobei sich der Effekt nicht direkt zeitigte, sondern etwas nachlief, wodurch sich auch die Schwierigkeiten beim Auffinden der Ursache der Verzerrung erklären ließen. Genauer formuliert waren die Ursache Feuchtigkeitsunterschiede in Luft und Sensorelektrolyt, die sich durch einen komplexen Diffusionsprozess auf das Sensorsignal auswirkten.

Um diese Verzerrung zu beseitigen, musste die Sensortemperatur in Abhängigkeit vom Wetter eingestellt werden, wodurch der Elektrolyt in Balance gehalten werden konnte und die Fehlausgaben vermieden wurden. Eine Folge war, dass die Messstationen eine Zertifizierung durch ein akkreditiertes Labor (Ineris) erhalten konnten, was wiederum ihre zukünftige Verwendung bei der statistischen Erhebung der Luftqualität erleichtern sollte. Der Gewinn an Signalstabilität hatte aber auch einen Preis: Nicht nur hatte das verbesserte Setting der Box ein höheres Gewicht, sie bedurfte auch einer eigenen Stromzufuhr, was ihren Einsatz wiederum deutlich einschränkte und damit die Möglichkeiten ihrer breiten Vermarktung limitierte. In einer neuen Generation von Modellen konnten dann Erkenntnisse komplexer mathematischer Korrekturansätze in die Konstruktion einfließen, wodurch die Geräte nicht nur deutlich leichter ausfielen, sondern ihr Betrieb auch über Solarenergie möglich wurde. Durch diese Maßnahmen ist nun die Marktförmigkeit des Produktes gewährleistet und zugleich die Möglichkeit geboten, die Luftqualität in Städten über ein Netzwerk von Messstationen ermitteln zu können.

Darstellung der gemessenen Verteilung inklusive der Qualitätsgrade (Bild via Bosch)

Die Boxen sind ein Ergebnis der Entwicklungs- und Projektleitungstätigkeit Martin Schreivogels bei Bosch, wobei er den abschließenden Prozess der Verwirklichung weiter begleiten wird, wie zuletzt an der nun beginnenden Kooperation von Bosch mit Palas deutlich wurde.[1] Zugleich diente ihm diese Arbeit als Material für seine Antrittsvorlesung, in der er auch die thematische Relevanz der Grundlagen der Elektrotechnik für Fragen der Anwendung und Umsetzung akzentuieren wollte. So biete sich im Rückgriff auf fundamentale Aspekte mitunter ein spezifischer Blick auf Probleme, aus dem dann wiederum genuine Lösungsansätze gewonnen werden können.

Die Mitgestaltung der Energiewende. Die Optimierung von Brennstoffzellen

Zielte das vormalige Projekt auf einen komplexen elektrochemischen Sensor und dessen Präzision und Funktionalität, geht es Schreivogel an der Hochschule Schmalkalden nun um die Vermessung eines elektrochemischen Systems mit Hilfe von Sensoren. Um die Funktion von Brennstoffzellen und Elektrolyseuren bei der Produktion von Wasserstoff verstehen und verbessern zu können, bedarf es eines breiten Sets an Sensoren, die die Anlagen und die Prozessabläufe überwachen. Diese offene Perspektive macht es erst möglich, eine Vielzahl von Variablen auf ihre Relevanz für die Transformation und ihre Optimierbarkeit hin zu befragen.

Die Energiewende hat durch äußere Anstöße aktuell einiges an Fahrt aufgenommen. Die Gewinnung von Wasserstoff als transportablen Energieträger und Speichermöglichkeit steht dabei noch immer vor zahllosen Herausforderungen, die durch die gerade erwünschte Geschwindigkeit im Aufbau einer Versorgungsinfrastruktur nicht geringer werden. Die zügige Umsetzung der Energiewende legt es nahe, schon in der Frühphase mit der Optimierung bereits bestehender Anlagen zu beginnen: Weil infolge des rasanten Aufbaus der Produktionsstätten die Optimalität als Ziel hinter die Realisierung rückt, entsteht hier ein Ansatzpunkt für die Forschung. Auch wenn davon auszugehen ist, dass die Technologie zur Erzeugung von Wasserstoff ein fortgeschrittenes Stadium erreicht hat ist, befinden sich Elektrolyseur- und Brennstoffzellensysteme noch immer in einer relativ frühen Entwicklungs- und Skalierungsphase. Somit bleibt die Optimierung der Effizienz und anderer Kriterien eine relevante Aufgabe, die zugleich die Energiewende vorantreibt. Im Fokus stehen somit die konkreten Anlagen, die mit Hilfe von Sensoren vermessen werden sollen, um auf diesen Messungen aufbauend konkrete Vorschläge für die Optimierung erarbeiten zu können. Ein zentraler Aspekt ist dabei die Datenverarbeitung: Die enormen Mengen an Informationen müssen strukturiert, gefiltert und evaluiert werden, um als belastbare Quelle genutzt werden zu können.

Ein Symbolbild: Die feine Verteilung von Wasserdampf

Die Region Südthüringen eignet sich schon deshalb für ein solches Vorhaben, weil es mehrere Kooperationspartner aus dem Bereich der Wissenschaft und der Wasserstoffwirtschaft gibt, mit denen ein Netzwerk von Institutionen und Anwendern der Wasserstofftechnologieforschung aufgebaut werden kann. „HySON – Institut für angewandte Wasserstoffforschung Sonneberg gemeinnützige GmbH“ und die Abteilung „Industrielle Wasserstofftechnologien Thüringen“ des Fraunhofer IKTS in Arnstadt sind zwei mögliche regionale Kooperationspartner. So ließe sich ein Zugang finden zu bestehenden Anlagen, die dann analysiert und optimiert werden können, um aus den Befunden der Einzelfälle im Anschluss generalisierende Aussagen generieren zu können. Nicht zuletzt können auch Expertisen an der Hochschule Schmalkalden und der Fakultät Elektrotechnik genutzt werden. Unter anderem befasst sich Professor Roy Knechtel intensiv mit Fragen der elektronischen Messtechnik und Sensorik.


[1] https://www.bosch-presse.de/pressportal/de/en/bosch-and-karlsruhe-based-measuring-technology-specialist-palas-team-up-for-better-air-quality-258432.html

Das Science Camp 2023 an der Hochschule Schmalkalden

Das Science Camp 2023 an der Hochschule Schmalkalden

In der zweiten Septemberhälfte fand das Science Camp zum Thema RoboBau an der Hochschule Schmalkalden statt. Über sieben Tage hinweg wurde Wissenschaft mit Experimentierfreude und Ingenieurwissenschaft mit interdisziplinärer Kooperation kombiniert. Insgesamt 25 Masterstudierende aus verschiedenen Fächern und mit unterschiedlichen Schwerpunkten wie Robotik, Elektrotechnik und dem 3D-Druck mussten ihre jeweiligen Fähigkeiten zusammenbringen und zugleich kreativ verknüpfen, um das Ziel des Wettbewerbs zu erreichen. Diese Kooperation zwischen Studierenden über die Grenzen verschiedener Disziplinen und Hochschulen hinweg ist die grundlegende Intention der Science Camps.

Die Idee der Science Camps geht auf eine Initiative der Allianz Thüringer Ingenieurwissenschaften zurück, also der übergreifenden Kooperation von Ingenieurstudiengängen verschiedener Thüringer Hochschulen. So setzt sich auch das Teilnehmerfeld nicht nur aus Studierenden unterschiedlicher Fachrichtungen der Ingenieurwissenschaft zusammen, die Teilnehmenden kommen auch aus verschiedenen Thüringer Hochschulen. Es ist dieser integrative, kooperative Ansatz gemeinsamer Problemlösungen, der im Zentrum der Allianz ThürIng steht. An der Hochschule Schmalkalden koordinierten Miriam Naujoks und Frederike Mohr die Konzeptionierung und Umsetzung des Science Camps. Unterstützt wurden sie und die Teilnehmenden insbesondere durch Prof. Schrödel als fachlichen Leitern sowie durch studentische Hilfskräfte.

Leitthemen und Ablauf

Das leitende Motiv dieses Camps war der RoboBau. Die Aufgabe der vier Teams war es, zunächst eine Brücke bestehend aus verschiedenen Bauelementen digital zu konstruieren und anhand eines 3D-Druckers zu fertigen. Anschließend musste die Brücke von einem Robotergreifarm zusammengesetzt werden. Auch wenn die entscheidenden Kriterien Stabilität und der effiziente Einsatz von Materialien waren, wurde die Kreativität der Aufbauten gewürdigt.

Der Donnerstag stand ganz unter dem Eindruck des Ankommens. Nach der Begrüßung durch den Vizepräsidenten für Studium und internationale Beziehungen, Prof. Dr. Uwe Hettler, stellte Frederike Mohr den Tagesablauf vor. Anschließend gab es eine Campusführung inklusive mehrerer Laborbesuche und ein gemeinsames Mittagessen. Am Nachmittag wurden die ersten thematischen Pflöcke eingeschlagen. Dr. László Dunaivon dem Department of structural engineering der Budapest university of technology and economics führte in die Thematik des Brückenbaus aus architektonischer Perspektive ein und stellte Grundprinzipien möglicher Aufbauweisen vor, an denen sich die Teilnehmenden am Science Camp orientieren konnten. Danach gab Prof. Abrahamczyk von der Bauhaus-Universität Weimar einen Überblick über die genaue Aufgabe und stellte die Teams vor. Den Tag rundete ein gemeinsames Grillen der knapp dreißig Teilnehmer aus fünf Hochschulen ab.

In den nächsten Tagen wurden verschiedene Crash-Kurse abgehalten. Neben Prof. Frank Schrödel, der die Studierenden u.a. in die Themen der Intelligent Robotics und Roboterprogrammierung einführte, gab Prof. Hartmut Seichter eine Übersicht in die Programmiersprache Python sowie in das Thema der Bildverarbeitung. Prof. Andreas Dietzel vermittelte einen ersten Eindruck in das Konstruieren mithilfe von Computern (CAD). Auch wenn der selbstständigen Arbeit der Master-Studierenden möglichst viel Raum gelassen werden sollte, wurde zwecks praktischer Veranschaulichung und kurzweiliger Ablenkung am Mittwoch eine Exkursion zu dem Unternehmen Mehnert – Experts for Special Machines 4.0 mit Sitz in Erfurt unternommen.

Auszeichnungen und Resümee

Auch wenn es bei derartigen kooperativen Projekten nicht im Mittelpunkt steht, gab es natürlich auch ein Gewinnerteam, dem die Brückenkonstruktion am überzeugendsten gelang. Herr Muralidhar Appana (Schmalkalden), Frau Arti Rana (Schmalkalden), Frau Rohini Kulkarni (Nordhausen), Frau Quratulain Siddiqi (Weimar), Herr Jakob Pflugbeil (Ilmenau) und Herr Jash Roopesh Shah (Jena) gewannen zudem den zweiten Wettbewerb, der die kreativste Lösung prämierte.

Dem Resümee Prof. Schrödels von der Fakultät Maschinenbau der Hochschule Schmalkalden ist nichts hinzuzufügen: „Es war inspirierend zu sehen, mit welchen hohen Maß an Begeisterung die Studierenden am Science Camp 2023 teilgenommen haben. So löcherten die Studierenden die beteiligten Dozenten mit vielen Fragen und tüftelten nicht nur bis spät abends, sondern auch am Wochenende in den Robotik Laboren der Hochschule Schmalkalden. Am Ende des Science Camp waren alle Studierenden in der Lage ein wirklich vorzeigbares Ergebnis stolz zu präsentieren – was mich wirklich begeisterte! Ich freue mich aufs nächste Science Camp!!“

Natürlich lässt sich doch noch etwas hinzufügen: Das nächste Science Camp wird im Frühjahr 2024 an der FH Erfurt stattfinden.

Die Anwendung im Blick. Über Forschungsprojekte von Andreas Wenzel

Die Anwendung im Blick. Über Forschungsprojekte von Andreas Wenzel

Professor Andreas Wenzel hat die Professur für Technische Informatik/Eingebettete Systeme an der Fakultät Elektrotechnik der HSM inne. Zusammen mit seinem Team der Forschungsgruppe Eingebettete Diagnosesysteme sucht er nach praktischen Lösungen für unterschiedliche Anwendungsfelder und Fragestellungen, zum Beispiel: Welche Genauigkeit benötigt ein drahtloses Indoor-Lokalisierungssystem für den Einsatz für mobile Robotik-Anwendung? Wie lässt sich eine digitales Werkzeugbegleitbuch mit Bedienungsanleitung und Montagevideos an Werkzeugformen integrieren und im Gebrauch am besten nutzen? Welche KI-Methoden und Algorithmen sind für maschinelle Bewertung der Produktionsqualität aus Prozessdaten besonders geeignet? 

Eine weitere Aufgabe, der sich das Team um Professor Wenzel in den Forschungsprojekten „Powermoduls“ und „WASABI“ in Kooperation mit der Fakultät für den Maschinenbau widmete, war die Optimierung von Spritzgussverfahren mit Hilfe eines integrierten Diagnosesystems: Lassen sich beim Herstellungsprozess bereits Daten erheben, welche die Güte des gefertigten Produkts prognostizieren können? Dies wäre ein Weg, bereits zu Beginn Fehlproduktionen zu vermeiden. Gerade weil in nahezu vollautomatisierten Produktionsprozessen weniger menschliche Handarbeit als vielmehr die Überwachung und Qualitätskontrolle der Produktion zur Optimierung gefragt ist, macht dieser Ansatz auch für die Industrie Sinn.

Zunächst galt es hierfür die messbaren Faktoren und Parameter im Prozess der Produktion auszumachen, welche für die Qualität des hergestellten Produkts entscheidend sind bzw. diese mittelbar beeinflussen. Neben dem Aspekt der sensiblen Detektion relevanter Sensordaten bestand die Herausforderung darin, die großen Mengen an Daten zu verarbeiten. Ein Mittel hierzu sind KI-unterstützte Verarbeitungsverfahren, also spezifischer Algorithmen, mit deren Hilfe die Daten geordnet, Muster erkannt und belastbare, relevante Informationen von anderen getrennt werden können. Zuletzt war die Ausgabe an die für die Produktion verantwortliche Person zu bedenken: Welche Informationen über die Entscheidung der KI mussten mitgeliefert werden, und in welchem Format? Welche Maßnahme kann der Prozessbediener im laufenden Prozess anpassen, um Fehlproduktionen zu vermeiden?

Die Tonalität von Klingen

Ein weiterer Forschungsschwerpunkt der vergangenen Jahre waren die  Projekte „EMIL“ und „SMoSys“, wobei ersteres zusammen mit Prof. Beneke von der Fakultät Maschinenbau, Class und der Universität Kassel durchgeführt wurde. In SMoSys wurde dies dann im Verbund mit der Uni Kassel, der Uni Göttingen und Class weiterentwickelt. Hier waren für die technischen Lösungen eine Kombination aus Zugängen der klassischen Ingenieurswissenschaft und der Datenverarbeitung mit künstlichen neuronalen Netzwerken notwendig. Eines der größeren Verschleißteile von Landmaschinen wie Feldhäckslern sind die Klingen, mit denen die Agrargüter wie Mais geschnitten werden. Bedingt durch den Zeitdruck der Ernte  müssen verschiedenen Wartungsprozesse auch kostenoptimiert gestaltet werden. Ein solcher Aspekt ist auch das Schleifen der Messer. Beide Forschungsvorhaben haben sowohl mit den Verschleiß, sowie mit der Prognose des Messerzustandes in realen Messumgebungen beschäftigt.

Fragen wie: „Wie lässt sich die Schärfe der Messer bestimmen?“ haben die beteiligten Forschungsgruppen natürlich auch beschäftigt. Hierfür wären allerlei technische Instrumente denkbar, die zwar eine Messung erlauben, aber zugleich mit einem hohen Aufwand verbunden wären. Im Rahmen des Projekts konnte zusätzlich ein praktikabler Ansatz, welcher auf bereits bestehende Gegebenheiten zurückgreift und in ihrem Aufwand minimal bleibt, erarbeitet werden. Professor Wenzel und sein Team griffen hierfür auf bereits integrierte Sensoren im Feldhäcksler zurück, welche die Schwingungen in der Nähe der Schneiden erfassen können. Wenn diese Schwingungen Auskunft über den Zustand der Klingen geben, könnte diese auch für die Entwicklung eines automatisiertes Monitoringsystems genutzt werden. Zuletzt war es wiederum die Aufgabe, aus den Daten eben jene belastbaren Signale und Muster zu extrahieren, an denen der Verschleiß der Klingen ablesbar war.

Professor Wenzel und sein Team befassen sich im Bereich der Landwirtschaft neben der Klingenschärfe der Feldhäcksler auch mit der Kartierung von Räumen für das autonome Fahren von landwirtschaftlichen Maschinen. Diese Aufgabe, die vor der Herausforderung einer eher rauen Umgebung steht, dient nicht zuletzt der optimalen Nutzung der natürlichen Ressourcen, zusätzlich werden auch Themenaspekte der Nachhaltigkeit behandelt. Für das Erkennen von Innovationspotenzialen und den Einsatz von KI-Algorithmen und eingebetteten Systemen sind intelligente Methoden sowie unterstützendes Know-how aus Sensorik, Prozessverständnis und praxisnahen Anwendungen für die Entwicklung von Lösungsansätzen für Industrie sowie Wissenschaft und Forschung von essentieller Bedeutung.

Die Vermessung des Klimas. Über Crowdsourcing als Instrument der Meteorologie

Die Vermessung des Klimas. Über Crowdsourcing als Instrument der Meteorologie

In den letzten Jahren konnten wir vermehrt ebenso trockene wie heiße Sommermonate erleben, in denen sich unsere Innenstädte zum Teil stark erwärmten. Gerade stark bebaute, versiegelte Stadtteile wiesen signifikant erhöhte Temperaturen auf und machten offenkundig, wie nützlich Grünflächen, Bäume und Wasserläufe für die Abkühlung urbaner Areale sind.

Nicht nur unterscheiden sich die klimatischen Bedingungen von Städten und ländlichen Gebieten, auch zwischen den Zentren und den Randzonen der Städte selbst treten Abweichungen auf. Zwar bestehen diese Temperaturunterschiede ganzjährig, im Sommer zeitigen sie jedoch spürbarere Effekte: So nahm die Zahl an Tropennächten, in denen die Temperatur nicht unter 20 Grad Celsius fällt, in stark verdichteten Innenstädten in der jüngsten Vergangenheit zu. Bis zu dreimal häufiger tritt dieses Phänomen mittlerweile auf. Die Hitze wird dabei von den versiegelten Flächen gespeichert und langsamer abgegeben als in begrünten und beschatteten Bereichen. Dieses Phänomen wird als urbaner Hitzeinseleffekt (UHI-Effekt) bezeichnet und wird uns als Folge des Klimawandels bereits in naher Zukunft noch häufiger betreffen.

Die Randlagen der Städte neigen demgemäß deutlich weniger zur Hitzebildung und -konservierung. Diese Abweichungen werden von den üblichen Instrumenten zur Ermittlung der Temperatur nur ungenügend erfasst, findet die Messung doch zumeist zentral an einem Ort statt und deckt so nicht den ganzen Stadtraum ab. Eine Bürgerinitiative in Bamberg nahm die Unterschiede zwischen der statistischen und der wahrgenommenen Temperatur zum Anlass für eine experimentelle Messung: An verschiedenen Stellen der Stadt wurden die Temperaturen über einen Tag stündlich abgetragen und verglichen, wobei sich Abweichungen von bis zu sieben Grad Celsius ergaben. Das Phänomen unterschiedlicher Wärmeentwicklung und die weitgehenden Effekte auf die Menschen vor Augen, lässt sich fragen, ob es nicht andere Möglichkeiten gibt, an meteorologische Daten zu kommen, die ein umfassenderes und detailliertes Bild zeichnen.

Klassisches Instrument zur Ermittelung der Umgebungstemperatur

Was ist Crowdsourcing?

Eine Möglichkeit besteht darin, die Quellen der Daten zu erhöhen und damit zugleich eine erweiterte räumliche Abdeckung zu erreichen. In den letzten Jahren hat sich die Anzahl an Sensoren, die uns in unserem Alltag begleiten, massiv erhöht. Dies reicht von den offensichtlichen Smartphones, in denen selbst verschiedene Sensoren Platz finden, bis hin zu sensorischen Anlagen in Autos und smarten Geräten wie Fitnessarmbändern und Ähnlichem. Nicht zuletzt haben sich durch die Verbreitung und Verfügbarkeit leistungsfähiger Sensoren die Preise für hochwertige, vernetzte Wetterstationen für die private Nutzung stark vergünstigt.

Durch diese Sensoren wird unsere Welt beständig vermessen und zugleich ein umfassender Pool an Informationen gesammelt. Neben den mittlerweile üblichen Kameras und Mikrofonen sind in diesen Geräten auch Sensoren verbaut, die meteorologische Daten erheben können. Über eine Verkopplung mit ebenfalls verfügbaren GPS Koordinaten ließe sich so eine Vielzahl an Wetterdaten und Metadaten erzeugen. Eine andere Möglichkeit, um die Datenlage zu erweitern, bietet sich im Rückgriff auf private Wetterstationen, die zugleich mit dem Internet verbunden sind. Auch über sie kann die Quellensituation immens erweitert werden.  Gerade weil im letzten Jahrzehnt die Verfügbarkeit und Bedienbarkeit von Instrumenten der Umweltbeobachtung leichter wurde, können sich nunmehr auch Laien an der Gewinnung und Auswertung von Daten beteiligen. Zugleich sind diese Daten durch die Netzwerkwerkfähigkeit der Geräte und die weiter reichende Abdeckung mit dem Internet universell und in Echtzeit abrufbar. Nicht zuletzt erlaubt die moderne Datenverarbeitung eine effiziente Datenselektion und die Übermittlung von Metadaten über den Standort, die Aufstellung und den Sensortyp, die für die Einschätzung der Messwerte relevant sind.

Just dieser Vorgang lässt sich als Crowdsourcing fassen, also der Vervielfältigung der Quellen von Datenmaterial außerhalb der Standardmessnetze. Zugleich besteht die Herausforderung in der Nutzung dieser Quellen darin, die Qualität der Daten und damit die Validität der Messungen gewährleisten zu können. Welche Instrumente eignen sich unter welchen Umständen für die Ermittlung von welchen Daten, wie lassen sich Messfehler vermeiden? Oder anders: Was sind die Bedingungen und Möglichkeiten der Nutzung von Crowdsourcing zur Gewinnung von atmosphärischen Messdaten? Und: Wie lassen sich Fehler in der Messung vermeiden und wie können Programme fehlerhafte oder unsichere Daten aussortieren? Genau diesen Fragen geht einer Gruppe von Forschenden in einem Beitrag für die Fachzeitschrift „Gefahrstoffe. Reinhaltung der Luft“ nach, an dessen Erstellung sich auch Prof. Roy Knechtel von der Fakultät für Elektrotechnik an der Hochschule Schmalkalden beteiligte, der an dieserHochsule für angewandte Wissenschaft die Professur fur autonome, intelligente Sensoren innehat. Dabei dient der Artikel auch der Vorbereitung einer entsprechenden VDI-Richtlinie, in die Fragen der Sensortechnik, der Sicherung der Datenqualität und die Möglichkeiten der Datenverarbeitung aufgegriffen werden sollen.

Was sind die Bedingungen für die Messung von Sensoren ?

Die Anhebung der Quantität heißt nicht automatisch, dass sich auch die Qualität der Daten erhöht. Für die verschiedenen Aufgaben der Ermittlung von Temperatur, Luftdruck und Luftfeuchte braucht es unterschiedliche, spezifische Sensoren und angepasste technische Lösungen. Die Herausforderungen der Umsetzung sind neben der erforderlichen Qualität der Detektion auch Variablen der Effizienz, also unter anderem der Energieverbrauch, und die Komplexität der Integration.

Die hohen Anforderungen an Messeinrichtungen und Sensoren stellen wiederum Ingenieure speziell der Elektrotechnik vor Herausforderungen: Welche Charakteristika müssen die Sensoren und die sie fassenden Bauteile aufweisen, damit die Funktionalität gewahrt bleibt und zugleich die meteorologischen Daten verlässlich erhoben werden können? Um nur ein Dilemma zu nennen, das abgewogen werden muss: Einerseits müssen die Instrumente von ihrer Umwelt getrennt werden, andererseits müssen sie einen möglichst direkten und unverstellten Zugang zum Messobjekt haben.

Nicht alle Geräte, in denen Sensoren verbaut sind, eignen sich in gleicher Weise: Smartphones, die eine hohe Verbreitung aufweisen, haben über ihre Sensoren keinen direkten Kontakt zur der sie umgebenden Luft und werden zudem eng am Körper getragen. Im momentanen Stand der Technik eignen sie sich folglich nicht zur Bestimmung der Temperatur. Dagegen sind die in privaten Smart Homes verbauten Instrumente zumindest teilweise für die Messung geeignet. Ab davon bietet sich im Rückgriff auf privat genutzte Wetterstationen die Möglichkeit, auf einen großen und weit verteilten Datenpool zurückgreifen zu können.

Die Aufgaben der Messinstrumente der Reihe nach: Niederschlagsmenge, Temperatur, Windrichtung und -stärke (per Ultraschall)

Smarte Sensoren und ihre Herausforderungen

Als Smart-Sensoren werden Sensoren bezeichnet, die über die Messgrößenerfassung hinaus auch die Signalaufbereitung und -verarbeitung in einem Objekt vereinigen, die anders gesagt „eine funktionelle und konstruktive Einheit eines oder mehrerer Sensorelemente und einer geeigneten Elektronik (VDI Gefahrstoffe 82 (2023), Nr. 07-08, S. 212) bilden. Die meteorologischen Messelemente zum Zwecke der Ermittlung von Temperatur, Feuchte, Luftdruck und Strahlung konnten erst in den letzten Jahrzehnten auf den Chips integriert werden. Nicht nur konnte die disponible Anzahl der Sensoren vergrößert und gleichzeitig ihre Kosten reduziert werden, auch ihre Qualität der Messtechnischen Eigenschaften konnte sichergestellt werden.

Als Beispiel soll hier nur die Sensortechnik Erwähnung finden, die zum Messen der Temperatur dient. Auch wenn es möglich ist, eigene Sensoren einzubauen, die die Lufttemperatur über Messwiderstände ermitteln und letztlich nahe an der klassischen Messung über Widerstandsthermometer bleiben, ist eine andere Lösung weitaus effizienter, greift diese doch auf schon vorhandene, thermosensible Elemente in integrierten Schaltkreisen zurück. Grob vereinfacht wird hierbei auf den Abstand zwischen Leitungs- und Valenzband des Siliziums zurückgegriffen, der sich mit der Temperatur verändert. So vermindert sich der Aufwand ohne dass die Qualität der Messung Einbußen erführe. Speziell die Ermittlung der Temperatur hat aber ihre Tücken: Weder darf die Messeinheit direkt dem Sonnenlicht ausgesetzt sein noch zu nahe an die Wärme reflektierenden oder absorbierenden Strukturen wie Wänden. Auch müssen die Messgeräte den Stau von Wärme vermeiden und für eine beständige Belüftung sorgen. Eine valide Messung der Temperatur muss all diese Faktoren beachten.

Neben der Luftfeuchte und dem Luftdruck lässt sich auch die Sonneneinstrahlung und die Konzentration verschiedener Gase ermitteln. Des Weiteren können auch die Richtung und die Stärke des Windes gemessen werden, die Menge des Niederschlags sowie die Bodenfeuchte und Bodentemperatur. Wiederum sind für jede die Aufgaben spezielle Instrumente der Messung zu entwickeln, die die Erhebung der Daten in der gebotenen Exaktheit erlauben. Die Windstärke wird beispielsweise weniger über minimalisierte Propeller gemessen, ist deren Verschleiß doch zu hoch, sondern mit Hilfe von Ultraschall.

Innenansicht des Instruments zur Niederschlagsmessung (Niederschlagswaage). Funktion: Flüssigkeit wird über den Trichter (s.o.) gesammelt und auf die Schaufel transportiert. Bei einem gewissen Füllstand klappt diese dann um und die zweite Schaufel wird gefüllt. Jeder Umschlag der Wippe wird dann als Gesamtvolumen zusammengenommen.

Was ist die Aufgabe der VDI-Richtlinien

Der Artikel, eine Kooperation von Thomas Foken, Benjamin Bechtel, Matthias Budde, Daniel Fenner, Roy Knechtel und Fred Meier dient der Vorbereitung einer entsprechenden VDI-Richtlinie. Diese technischen Normen werden vom Verein Deutscher Ingenieure (VDI) aufgestellt: Sie halten Empfehlungen, Standards und Regeln im Bereich der Ingenieurwissenschaften bereit und dienen kurz gefasst als grundlegende Orientierung und Vereinheitlichung ingenieurwissenschaftlicher und angewandter Arbeit. Es geht also um einen Grundstock an Empfehlungen für Ingenieur:innen im Umgang mit Geräten, Medien und u.a. Techniken. Gerade bei neuen technologischen Entwicklungen wie dem Crowdsourcing stellen die Richtlinien die Qualität und die instruktive Verwendung in einem sich schnell entwickelndem Forschungsfeld sicher.

Neben Kriterien der Beurteilung und Bewertung stellen die Richtlinien Hilfestellungen in Form spezifischer Arbeitsunterlagen und Entscheidungshilfen bereit. Zudem geben sie Einschätzungen der technischen Standards und Anleitungen der Anwendung. Kurz zielt dies auf technische Prozess- und Problemlösungen und deren gelingende Realisierung. Damit die meteorologischen Daten des Crowdsourcings also zu validen, verlässlichen Quellen der Information werden können, engagieren sich Forschende wie Roy Knechtel ehrenamtlich an der Erstellung von VDI-Richtlinien.

Der E-Science-Day 2022. Ein kleiner Einblick in ein facettenreiches Forschungsspektrum

Der E-Science-Day 2022. Ein kleiner Einblick in ein facettenreiches Forschungsspektrum

Mitte Dezember fand der E-Science Day 22 an der Hochschule Schmalkalden statt. Ziel der halbtägigen Veranstaltung war es, die vielen Projekte und Forschungsaktivitäten an der Fakultät Elektrotechnik in die Öffentlichkeit zu tragen. Zugleich ergab sich die Möglichkeit, die Attraktivität der Studiengänge und die sich mit dem Abschluss bietenden Chancen auf dem Arbeitsmarkt den gastierenden Schulklassen aus der Region vor Augen zu führen.


Am Anfang standen die Begrüßungsworte von Prof. Maria Schweigel, die die verschiedenen Facetten der Fakultät auffächerte. Diese Übersicht über die vielfältigen Bachelor- und Masterstudiengänge diente als leitende Orientierung für die Schulklassen: Was macht die verschiedenen Studiengänge aus, worin liegen ihre Schwerpunkte des Studiums und wohin führen die möglichen Pfade nach dem Abschluss? Das gegenwärtig allzu vernehmbare Raunen des Wortes Fachkräftemangel klingt in den Ohren dieser Studierenden eher wie ein Versprechen guter und sicherer Arbeitsplätze.


Ionenkanäle als Medien des Transports


Im ersten Vortrag, gehalten von Prof. Eckhard Schulz, stand ein Thema der Grundlagenforschung im Zentrum: Ionenkanäle – das sind porenbildende Transmembranproteine, die elektrisch geladenen Teilchen, also den Ionen, das selektive Durchqueren von Biomembranen ermöglichen. Mit ihrer Steuerbarkeit durch Botenstoffe, das Membranpotenzial oder auch äußere Einflüsse, sind sie auf Zellebene nahezu an allen Lebensprozessen beteiligt, wie z.B. im Nervensystem oder bei Stoffwechselvorgängen. In diesem Forschungsgegenstand verbinden sich dementsprechend Teilgebiete aus Medizin/Biologie mit Spezialgebieten von Physik/Mathematik, wobei diese Verknüpfung auch an der langjährigen Kooperation der Hochschule Schmalkalden mit dem Physiologischen Institut des Universitätsklinikums Jena deutlich wird.

Prof. Eckhard Schulz


Prof. Schulz erläuterte, wie sich das stochastische Schaltverhalten der Ionenkanäle durch mathematische Modelle beschreiben lässt und wie man die Modellparameter aus experimentellen Daten von Patch-Clamp-Messungen ermitteln kann. Diese so besser zu verstehenden Transportprozesse sind u.a. für pharmakologische Anwendungen von Interesse, da viele Medikamente ihre Wirkung gerade durch die gezielte Beeinflussung bestimmter Ionenkanäle entfalten.


Über organisatorischen Herausforderungen der Nutzung von Windenergie


Den zweiten Vortrag übernahm Assoc. Prof. Faruk Ugranlı von der Bartin University (Türkei), der sich gerade als Gastwissenschaftler an der Hochschule Schmalkalden aufhält. Im Blickpunkt seiner Forschung steht die Infrastruktur der Energieversorgung und die Möglichkeiten und Grenzen der Nutzung von Windenergie. Der Energiebedarf moderner Gesellschaften wächst nicht nur beständig, die Energieversorgung ist auch das Fundament ihres Wohlstandes. Zu diesen Aufgaben kommt noch die Herausforderung hinzu, dass die Energie langfristig weder aus fossilen noch atomaren Quellen stammen soll. Um diesen gesellschaftlichen Auftrag der Energiewende zu einem Erfolg zu machen, ist es mithin geboten, die Potentiale regenerativer Energien für eine stabile Versorgung zu analysieren.

Assoc. Prof. Faruk Ugranlı


Die Vorteile der Windenergie liegen auf der Hand: Sie ist günstig und sauber, die Effizienz moderner Windräder immer höher. Auf der negativen Seite stehen indes ihre fehlende Konstanz und Planbarkeit, wodurch sie sich nicht als alleiniger Energieträger eignet. Zugleich sind die potentiellen Ressourcen an Windenergie ungleich verteilt: Den windreichen Küsten Norddeutschlands steht kein süddeutsches Pendant gegenüber. Folglich muss Energie verteilt werden, und dies bedarf wiederum gut ausgebauter sehr großflächige Netzwerke der Energieinfrastruktur, um für erneuerbare Energien ungünstige Wetterlagen ausgleichen zu können. Genau hierfür gilt es, Konzepte der Optimierung zu entwickeln.


Das Verhältnis von Material und Struktur


Dr. Martin Seyring, noch recht frisch an der Hochschule Schmalkalden, verband einen Rückblick auf seiner bislang verfolgten Forschungsinteressen mit einem Ausblick darauf, womit er sich an der Hochschule Schmalkalden beschäftigen will. Grundsätzlich widmet er sich der Beziehung von Material und Struktur: Welche Auswirkungen haben Herstellungsprozesse und Einflüsse wie Wärme und Druck auf die nanoskaligen Strukturen der verwandten Materialien? Welche positiven, welche negativen Effekte zeitigt dieses oder jenes Material, dieses oder jenes Verfahren; wie lassen sich nutzvolle Eigenschaften bewahren, negative Effekte vermeiden? Um diesen Phänomenen nachzuspüren, verwendet Seyring ein Elektronenmikroskop, dessen Darstellung bis zu einer Auflösung im Nanometerbereich reicht. So lassen sich kleinste und feinste Veränderungen der Struktur des Materials entdecken.

Dr. Martin Seyring


Da wir uns hier nicht in den Details verlieren können, müssen ein paar wenige Sätze zu den Forschungsprojekten ausreichen: Wie lässt sich das Material von sogenannten Supermagneten optimieren? Welche Folgen haben unterschiedliche Temperaturen für die Werkstoffe, bzw. wann verändern sich die Kristalle und welche Effekte hat dies auf den Magnetismus? Siliziumbatterien sind in unserem Alltag kaum mehr wegzudenken, dennoch sind die genauen Vorgänge in den Ladungs- und Entladungsprozessen noch recht unerforscht. Seyring ging es neben der Charakterisierung des Strukturwandels in den Graphit-Anoden um die Frage der symmetrischen oder asymmetrischen Verteilung der Ladungen und welche Folgen eventuelle Ungleichgewichte für die Stabilität der Akkus haben. Die elektronischen Kontakte von spezifischen KZF-Steckverbindungen lassen sich als drittes Beispiel anführen: Hierbei war es die Frage, wie sich der Kontakt in Anhängigkeit vom Material optimieren lässt. Wegmarken beim Verständnis auftretender Probleme bei den Steckverbindungen waren die Temperatur, die Kristallographie und mögliche Oxidrückstände auf den Stiften. An der Hochschule Schmalkalden will sich Seyring im Bereich der Halbleiter-Sensoren einbringen: Neben der grundsätzlichen Charakterisierung von Materialien soll es ihm um die Beurteilung von Füge- und Bondprozessen gehen, unter anderem in Hinsicht der Auswahl der geeignetsten der Materialien, ihrer Dicke und Kombinationen.


Die Alltäglichkeit von Sensoren


Krankheitsbedingt konnte ein Teil der Vortragenden nicht vor Ort sein. Prof. Roy Knechtel übernahm es, die angedachten Themen vorzustellen. Jonas Distel untersuchte die Funkübertragungsstandards für die Umsetzung neuer Geschäftsprozesse und die Optimierung der Energielieferung bei Energieversorgungsunternehmen. Fragen waren neben der Verbreitung und Belastbarkeit der Datenverbindungen auch die Abwägung zwischen kommerziellen und nicht kommerziellen Modellen. Frau Dr. Manuela Göbelt ist Program-Managerin bei der X-FAB MEMS Foundry GmbH und befasste sich mit dem Thema: “Wafer Level Packaging for Advanced MEMS based on Wafer Bonding and TSVs” und arbeitet dabei eng mit Prof. Knechtel zusammen. Wie Roy Knechtel beispielhaft an modernen In-Ear-Kopfhörern vorführte, ist zeitgemäße, mittlerweile allgegenwärtige Technik voll mit hochkomplexen, kleinen Sensoren. Die technische Finesse ist auch anhand aktueller Smartphones und ihren Möglichkeiten offenkundig: Neben Lautsprechern und Mikrophonen beinhalten diese Navigations- und Ortungselemente, Fotosensoren und Temperaturmesser usw. Und dies alles auf kleinstem Raum. Die Forschung geht hier in Richtung der Optimierung und weiteren Minimierung der verschiedenartigen Komponenten wie Sensoren, sollen die Endgeräte doch immer kleiner und flacher dabei aber auch immer leistungsfähiger und komfortabler werden.

Prof. Roy Knechtel


Kurzum lässt sich festhalten: Das Tableau der Projekte und Forschungsvorhaben an der Fakultät der Elektrotechnik ist mannigfaltig und bietet Forschenden verschiedene Möglichkeiten, ihre kreative Neugier auszuleben und Vorhaben umzusetzen. Hierzu passend stand am Abschluss des Tages das Schülerforschungszentrum im Fokus, welches demnächst in Räume der Fakultät der Elektrotechnik umzieht und sich die Räumlichkeiten mit einem neuen Elektrotechniklabor für Studierende teilen wird. Damit Schülerinnnen und Studierende sich auch künftig ihrem Forschungsdrang nachgehen können, bemüht sich unter anderen Prof. Knechtel gerade darum, einen Grundstock an technischer Ausrüstung am neuen Ort zusammenzutragen und zur Verfügung zu stellen. Wissenschaft beginnt mit einem neugierigen Blick auf die Welt: Genau hier will das Schülerforschungszentrum, auch mit Unterstützung der Fakultät Elektrotechnik, ansetzen und die Reise der Entdeckung unterstützend begleiten.