Drucken mit Licht – Über die Potentiale der Fotolithografie

Drucken mit Licht – Über die Potentiale der Fotolithografie

Um immer kleinere und effizientere Mikrochips produzieren zu können, müssen permanent neue Wege beschritten und Technologien erforscht werden. Gegenwärtig sind es spezielle Verfahren der Fotolithographie, in welchem Halbleiter mit Hilfe von extremem ultraviolettem Licht hergestellt werden, die entscheidende Potentiale versprechen. Auch wenn der technische Aufwand dieser Methode immens ist und eine lange Zeit der Forschung und Entwicklung bedurfte, bietet sie enorme Chancen für die Fertigung von hochkomplexen Bauteilen. An der Hochschule Schmalkalden will sich Professor Christian Rödel, vor kurzem auf die Professur für Physik und angewandte Lasertechnik berufen, diesem Gebiet in Forschung und Lehre widmen.

Um den praktischen Nutzen der Mikroelektronik und die Fortschritte der letzten Dekaden erkennen zu können, genügt ein Blick in unsere Hosentaschen: Auch wenn die Smartphones mittlerweile aus dem Alltag nicht mehr wegzudenken sind, ist es doch erstaunlich, was die kleinen Geräte gerade im Hinblick auf ihren noch jungen Ursprung vermögen. Da der technische Fortschritt ein stetiger Prozess der Innovation ist, sucht die Mikroelektronik weiter nach Mitteln und Ansätzen, Bauteile zu verkleinern bzw. komplexer gestalten zu können. Ein Weg dahin sind fotolithographische Methoden, bei denen Chips mit Hilfe von Lasern fotolithografisch hergestellt werden. Einerseits bieten sich im Rückgriff auf das extreme ultraviolette Licht spezifische Vorteile gerade für die Miniaturisierung elektronischer Bauteile, andererseits haben diese Verfahren in ihrer Anwendung hohe technische und praktische Voraussetzungen.

Die Forschung in diesem Bereich wurde in letzten Dekaden vor allem durch ein Unternehmen aus den Niederlanden vorangetrieben: Vor nunmehr dreißig Jahren begann hier die Erforschung der technischen Grundlagen und führte zur Entwicklung einer Apparatur, die heute zu den komplexesten und teuersten Systemen gehört und die ASML zu einem der wertvollsten Unternehmen der Welt gemacht hat. Der Vorsprung im Bereich von Forschung und Entwicklung, den sich ASML erarbeitet hat, beruht auf einer langfristigen Spezialisierung, die selbst noch die Zulieferfirmen umfasst. Im Moment ist nur diese Firma in der Lage, Anlagen herzustellen, die Fotolithographie mit extremem ultraviolettem Licht verwenden. Die Produktion modernster Chips ist in der Folge von diesem einen Anbieter abhängig, was letztlich sogar geopolitische Komplikationen nach sich zieht.[1]

Schreiben mit Licht

Lithographie ist ursprünglich ein Flachdruckverfahren, was meint, dass der Druck nicht über eine vertieft oder erhaben gearbeitete Zeichnung auf der Druckplatte erfolgt, sondern die druckenden und nichtdruckenden Partien auf einer Ebene liegen. Die Maske wird hierbei durch eine Versiegelung der Steinplatte aufgetragen, wobei das Prinzip auf der Unmischbarkeit von Fett und Wasser basiert. Während die druckenden Partien die fettreiche Druckfarbe aufnehmen, werden die nichtdruckenden Stellen mit einem Wasserfilm befeuchtet und stoßen die Druckfarbe ab. Im Falle der Fotolithographie wird dieses Prinzip durch Licht und lichtreaktive Substanzen umgesetzt. Kurz gefasst wird eine hauchdünne Siliziumscheibe, Wafer genannt, mit einem Licht-empfindlichen Fotolack beschichtet und anschließend mittels einer kurzzeitigen Strahlung über eine Maske belichtet, wodurch sich die Chemie des Lacks verändert und die Muster übertragen werden. Durch Wiederholung dieses Prozesses entstehen komplexe 3-dimensionale Strukturen – die Mikrochips. Auch wenn dieses Verfahren schon eine längere Zeit eine übliche Methode in der Herstellung von Microchips war, verändern sich durch die EUV-Lithographie die Rahmenbedingungen und Möglichkeitsräume.

Der Grad an Präzision, den diese Maschine verlangen, lässt sich fast nur in der Prosa von Superlativen Ausdruck verleihen. Ein Beispiel: Die Laser sind so genau, dass sie es erlauben würden, von der Erde aus eine Münze auf der Mondoberfläche zu treffen. Es geht hier darum, komplexe elektronische Bauteile im Nanometerbereich zu bauen, wobei sich verschiedene physikalische und optische Herausforderungen kombinieren. Um sich die Größenordnung auch nur annähernd vorstellen zu können: Wir sprechen hier von dem Tausendstel eines menschlichen Haars. Hier wurde nun das Licht selbst zum Problem: Um auf dieser Ebene arbeiten zu können, reicht die Qualität des Lichts der üblichen Laser aufgrund der Wellenlänge nicht aus.

In diesem Vorlesungsexperiment soll Studierenden die vergrößernde Abbildung eines Maßstabs näher gebracht werden. In der Fotolithografie wird vom Prinzip her ähnlich eine Maske auf einen Siliziumwafer mit Fotolack abgebildet.

Das Unsichtbare nutzbar machen

Warum also der Rückgriff auf das extreme ultraviolette Licht? Licht ist bekanntlich eine elektromagnetische Welle und besitzt charakteristische Wellenlängen, die wiederum die Bedingungen ihrer Anwendung vorgeben. Kürzere Wellenlängen lassen das Schreiben kleinerer Strukturen zu, pointiert formuliert. Um ein lebenspraktisches Beispiel zu bemühen: Auch wenn sie von identischer Größe sind, unterscheidet sich der Wellenlängenbereich der schreibenden und lesenden Laser von CD´s und Blu-Ray´s, wodurch vielmehr Daten auf das BD-Medium geschrieben werden können. Das ultraviolette Licht, das außerhalb der menschlichen Wahrnehmbarkeit liegt – außer indirekt im Falle des Sonnenbrandes –, hat eine sehr niedrige Wellenlänge. Extremes ultraviolettes Licht hat eine Wellenlänge von 13,5 Nanometer und liegt damit weit außerhalb des Bereichs menschlicher Perzeption. Dieses extrem ultraviolette Licht wird benötigt, um die Miniaturisierung voranzutreiben und kleinere Strukturen und Integrationsdichten in einer Größenordnung von unter 15 Nanometer realisieren zu können.

Um mit diesem Licht arbeiten zu können bedarf es allerdings einiger Vorkehrungen: Da dies Licht sehr leicht absorbiert wird, muss die gesamte Belichtung mit EUV-Strahlung im Vakuum vollzogen werden. Zudem können keine Linsen verwandt werden, wie es üblicherweise mit Lasertechnologien in Verbindung gebracht wird, vielmehr funktioniert die Bündelung des Lichts über hochpräszise Spiegel, deren Herstellungsprozess für sich schon höchst anspruchsvoll ist.

Auch wenn die Forschung an der Nutzung des extremen ultravioletten Lichts schon länger weilte, gelang erst Mitte des letzten Jahrzehnts ein entscheidender Durchbruch: Indem man flüssiges Zinn als Lichtquelle nutzen konnte, wurde die Schwelle zur Massenproduktion überschritten, durch die sich die Anschaffung einer solchen Maschine überhaupt erst lohnt. Das Zinn wird dabei als Tropfen in der Maschine mit einem Laserpuls beschossen, wodurch die Kugel die Form eines Eierkuchens annimmt. Im Anschluss wird das Zinn von einem stärkeren Laserpuls nochmals beschossen, wodurch dann das EUV-Licht entsteht und über verschiedene Spiegel zur Maske und dann zum Wafer geführt wird. Erst durch dieses Verfahren wurde die Produktion von Computerchips in Masse möglich und die EUV-Lithographie rentabel. Im Angesicht der Preise der Apparaturen zwischen 185 und 360 Millionen Euro muss sich die Anschaffung lohnen. Daher bedarf es eines hohen Outputs und einer verlässlichen Produktion, was wiederum die beständige Weiterentwicklung nahezu aller Komponenten der Maschine umfasst.

Partnerschaften, Forschung und Lehre

In Anbetracht der Komplexität dieser Technologie lässt sich erahnen, wie viele Wissenschaftlter:innen an ihrer Erforschung beteiligt waren und nunmehr damit beschäftigt sind, sie weiter zu verbessern. Zugleich macht die Komplexität eine Konzentration notwendig. An der Hochschule Schmalkalden möchte sich Prof. Christian Rödel mit der spektralen Charakterisierung von EUV-Quellen und Komponenten beschäftigen, die in der EUV-Lithografie eingesetzt werden können. Das sind zum einen dünne Filterfolien, aber auch EUV-Spiegel, die aus vielen Nanometer-dünnen Schichten bestehen.

Um Komponenten testen und optimieren zu können, die in der EUV-Lithographie und der Inspektion eingesetzt werden, wurde an der an der Hochschule Schmalkalden, gefördert durch Mittel der Carl-Zeiss-Stiftung, das Projekt EUV-4-LITHO ins Leben gerufen. Mit Unterstützung von Kooperationspartnern aus der Region bis ins europäische Ausland wird Professor Rödel und sein Team ein hochauflösendes EUV-Spektrometer entwickeln, mit dem sich die Vielschichtsysteme der Spiegel und ihre Eigenschaften der Reflektivität mit bisher unerreichter Präzision vermessen lassen.

Das Reflexionsgitter aus dem Vorlesungsexperiment spaltet das weiße Umgebungslicht in die spektralen Bestandteile auf. Im Projekt EUV-4-LITHO soll ebenso ein Reflexionsgitter eingesetzt werden, um die EUV-Strahlung spektral zu charakterisieren.

Auch wenn die EUV-Lithografie eine innovative Technologie der Gegenwart ist, lassen sich hier Forschung und Lehre verbinden. So entstand zum Beispiel im Projekt EUV-4-LITHO bereits eine Masterarbeit und es wurde eine Exkursion zum DESY, dem Deutschen Elektronen-Synchrotron, unternommen, um hier Untersuchungen mit EUV-Strahlung von Freien-Elektronen-Lasern vorzunehmen. Neben der Lehre steht für Professor Rödel die Kooperation im Fokus seiner Arbeit an der Hochschule für angewandte Wissenschaften. Neben den mannigfaltigen Projektpartnerschaften geht es ihm auch im die konkrete Vernetzung vor Ort, zum Beispiel der Verknüpfung von Forschungsthemen des Maschinenbaus und der Elektrotechnik. Dabei liegt im auch die Präzisionsmesstechnik am Herzen, die im Maschinenbau eingesetzt wird.


[1] Wer sich über diesen Aspekt informieren möchte: Chris Miller, Chip War. The Fight for the World’s Most Critical Technology, New York 2022.

* Das Beitragsbild zeigt ein Vorlesungs- und Praktikumsexperiment, in dem die charakteristischen Linien einer Natriumdampflampe bei 589 nm mit einem Reflexionsgitter spektral untersucht werden. Eine Xenon-basierte EUV-Lichtquelle soll an der Hochschule Schmalkalden entwickelt werden, die in ähnlicher Weise bezüglich des Spektrums bei 13,5 nm untersucht werden soll.