Der Mensch im Mittelpunkt. Die Innovationen im Werkzeugbau zwischen Ökonomie und Ökologie

Der Mensch im Mittelpunkt. Die Innovationen im Werkzeugbau zwischen Ökonomie und Ökologie

Automatisierung, Digitalisierung, Künstliche Intelligenz: Die Herausforderungen des Maschinen- und Werkzeugbaus waren in den letzten Jahren durchaus mannigfaltig. Aber dies waren bei Leibe nicht die einzigen Aufgaben: Die Nachhaltigkeit gewinnt immer mehr an Bedeutung, und der Maschinen- und Werkzeugbau muss sich im Spannungsfeld zwischen Ökonomie und Ökologie verorten. Gleichwohl wäre es falsch, diese Spannung als ein Gegeneinander aufzufassen, vielmehr kann und sollte der Druck als Initial für innovative Veränderungen aufgenommen werden, so ein Kredo des jüngsten Praxisforum Werkzeugbau des Verbands Deutscher Werkzeug- und Formenbauer (VDWF)  und der WBA Aachener Werkzeugbau Akademie an der Hochschule Schmalkalden.

Das Motto des Tages mit seinem umfänglichen Programm war: „Der Mensch steht im Mittelpunkt. Die Bedürfnisse von Menschen, ihr Komfort und ihre Interessen sind ein antreibender Motor der Innovationskraft des Maschinen- und Werkzeugbaus in seinen verschiedenen Facetten. Den Alltag bequemer zu machen zählt hier ebenso dazu wie Produkte besser und ökologischer sowie kostengünstig und daher allgemein verfügbar anzubieten. Um diese Ziele zu erreichen, können Instrumente wie die Künstliche Intelligenz helfen.

Die Nachhaltigkeit erhielt in den letzten Jahren mehr und mehr Bedeutung. Gerade weil der Klimawandel und seine Folgen immer deutlicher zutage treten und ins gesellschaftliche Bewusstsein rücken, richten sich Forderungen an die Politik und die Wirtschaft. Allerdings trifft diese Entwicklung den Maschinen – und Werkzeugbau keineswegs unvorbereitet: Der sorgsame Umgang mit Materialien, Rohstoffen und Energieträgern war schon immer geboten und ein wichtiger Aspekt von Entwicklungen und Innovationen, von Hochschulen angewandter Wissenschaften, forschenden Unternehmen und ihren gemeinsamen Kooperationsprojekten.

Gastgeber der Veranstaltung war die Angewandte Kunststofftechnik der Hochschule Schmalkalden, wobei Prof. Dr. Thomas Seul, Inhaber der Professur für Fertigungstechnik und Werkzeugkonstruktion an der HSM und Präsident des VDWF, auch die Aufgabe der Begrüßung übernahm. Hier griff er das Motto „Der Mensch steht im Mittelpunkt“ auf und machte zugleich deutlich, dass auch die Studiengänge Menschen, also engagierte und interessierte Studierende, bräuchte. Um all die technologischen, ökonomischen und ökologischen Herausforderungen angehen zu können, bedarf es gut ausgebildete Problemlöser: Gerade anwendungsnahe ingenieurwissenschaftliche Studiengänge wie die Kunststofftechnik vermitteln im Rahmen des Bachelor- und Masterstudiums Fertigkeiten und Fähigkeiten, die die zukünftigen Ingenieure und Ingenieurinnen in die Lage versetzen, innovative Antworten auf komplexe Herausforderungen zu finden.

Aussstellung und Austausch im Foyer

Innovationen, Rezyklate und ökologische Potentiale

Die thematische Ausrichtung der Treffpunkte wechselt mit dem Ort der Veranstaltung, und in Schmalkalden steht traditionellerweise der Spritzguss im Fokus. In den verschiedenen Vorträgen des Tages wurden unterschiedliche Aspekte der Nachhaltigkeit verhandelt: Die Frage war unter anderem, wie wir Rezyklate optimal nutzen, Kreisläufe schließen oder den Energiebedarf gemäß ökologischer Imperative decken können.

Den Anfang machte Frank Schockemöhle von dem Unternehmen Pöppelmann, der sich mit dem Thema «Reduzierung der Treibhausgasemission durch Einsatz von Rezyklaten» befasste. Das Familienunternehmen aus Lohne hat eine nachhaltige Kreislaufwirtschaft ihrer Produktion und Produkte ins Visier genommen und eine mehrstufige Strategie zur Umsetzung konzipiert. Es versteht sich von selbst, dass der Lebenszyklus von Kunststoffen maximiert werden sollte, werden diese Materialien doch in aufwändigen Verfahren gewonnen. Ein Ansatz ist dabei, Kunststoffe zu recyceln und wieder in den Kreislauf zu überführen, wobei auch die EU den Unternehmen aufgibt, entsprechende Mengen an postconsumer-Material, das in anderen Worten schon einmal genutzt wurde, einzubringen. Probleme sind dabei der Aufwand der Aufbereitung und die eingeschränkten Möglichkeiten der Wiederverwendung. Die Wiederverwertung wird umso aufwändiger, je mehr Materialien, also unterschiedliche Kunststoffe oder andere Materialien wie Papier und Metall Verwendung finden. Etiketten oder die Aluminiumdeckel bei Joghurtverpackungen sind hier bekannte Beispiele. Je sortenreiner also ein Objekt ist, umso einfacher die Wiederverwertung: Wichtig ist, dies schon beim Produktdesign selbst zu bedenken. Zum anderen Problem: Zum einen eignen sich natürlich Rezyklate nicht für alle Anwendungen, bleiben doch zumeist Restbestände an farblichen und olfaktorischen Beimengungen. Viele andere Bereiche, in denen zum Beispiel kein direkter Kontakt mit dem Produkt besteht, könnten Rezyklate verwendet werden, dürfen es aber aufgrund der momentanen Gesetzeslage nicht. Hier gäbe es also Stellschrauben. Durch ein konsequentes Design for recycling und eine Anpassung bestimmter Normen ließen sich die Treibhausgasemissionen noch weiter senken. Andere Wege zur Senkung von Emissionen sind die Reduzierung des Materials und die Etablierung echter Kreislaufsysteme von Rohstoffen.

Die Aachener Werkzeugbau Akademie (WBA) ist in den Feldern Beratung, digitale Lösungen, Weiterbildung und Forschung speziell für den Werkzeugbau aktiv. Dr. David Welling, der Geschäftsführer der WBA, arbeitete in seinem Vortrag „Der öko-effektive Werkzeugbau – ökologisch notwendig und ökonomisch erfolgreich “ den Nutzen von Nachhaltigkeitsinitiativen heraus. Zunächst ging es ihm um eine Bestandsaufnahme der gegenwärtigen Situation des Werkzeugbaus, die sich nicht anders als eine multiple und anhaltende Krise bezeichnen lässt. So träfe eine Strategie- auf eine Erfolgskrise, woraus am Ende eine Liquiditätskrise folgen könne. Die Krisenhaftigkeit zeige sich auch an wichtigen Indikatoren wie einer sinkenden durchschnittlichen Marge, einer stagnierenden Wertschöpfung pro Mitarbeitenden und einer sinkenden Quote von Aufträgen ohne Budgetüberschreitung (ab 2019). Neben die ökonomischen Herausforderungen träten nun noch ökologische, wobei Dr. David Welling dafür plädierte, beide Aspekte gemeinsam zu lösen. Der ökologische Druck besteht nicht nur aus der Selbstverpflichtung der EU zur Klimaneutralität und den entsprechenden Maßnahmen, sondern auch aus den Strafen für nichtgemeldete CO2-Emissionen, Berichtspflichten und Nachhaltigkeitsanforderungen. Der Ansatz der Öko-Effektivität zielt darauf, Herausforderungen auf beiden Feldern mit einer Lösung zu begegnen, also beides zusammenzudenken und produktiv zu nutzen. Zum Beispiel regen die hohen Energiekosten zu einem noch effizienteren Produzieren an, was wiederum die Treibhausgasemissionen senkt.

Blick ins Auditorium

Karosserien und Schäume

Klaus Sammer, Leiter Werkzeugbau, Instandhaltung und Vorentwicklung der Leichtmetallgießerei, und Thomas Kopp gaben einen Einblick in die Entwicklungen beim Karosseriebau bei BMW Landshut: Bei dem Karosseriebau war die Herausforderung schon immer, komplexe und zugleich große Bauteile effizient herzustellen. Das Verfahren des Aluminium-Druckgusses wurde hierbei immer mehr verfeinert: Die in Landshut vor Kurzem entwickelte Mehrplatten-Technologie[i] erlaubt, bei der Konstruktion der Komponenten den Primat von der Optimierung des Fließwegs hin zur Funktionalität zu verlegen. Zugleich lassen sich so Material und Gewicht einsparen, was wiederum zu Einsparungen bei den Emissionen führt. Eine weitere Herausforderung, vor die in der momentanen Lage vermutlich alles Gießereien und Schmelzen stehen, sind die hohen Energiekosten. Durch diesen Druck bietet sich eine Umstellung auf nachhaltige Rohstoffe wie Solarenergie und grünen Wasserstoff an, was wiederum dem Ansatz der Öko-Effektivität entspricht. Natürlich entstehen wiederum Folgeprobleme wie unterschiedliche Temperaturen beim Verbrennen, die Korrosion durch das anfallende Wasser und höheren Verbräuche im Vergleich zum Erdgas: Aufgabe ist es dann, Erfahrungen mit den neuen Verfahren zu sammeln und Lösungen für eventuelle Probleme zu finden. Auch die Elektromobilität ist in diesem Sinne eine Herausforderung, die zu Innovationen anregt: Die Karosserien müssen nun noch komplexer werden und mehr Funktionen integrieren, was wiederum neue Verfahren ihrer industriellen Produktion verlangt. Die Serienfertigung zieht zudem weitere Anforderungen von der Kosteneffizienz bis hin zur Klimabilanz nach sich. Das jüngst vorgestellte „Injector Casting“[ii] Verfahren der Leichtmetallgießerei aus Landshut könnte eine innovative Lösung sein.

Eine andere innovative Möglichkeit zur Einsparung an Material im Kunststoffspritzguss ist das Schäumen. Neben diesem Aspekt bietet dieser Ansatz auch andere Vorzüge, auf die Uwe Kolshorn vom Kunststoff-Instituts Lüdenscheid in seinem Vortrag „Die <andere Denke> beim Kunststoffschäumen – geringere Drücke, Aluwerkzeuge und längere Fließwege, was will man mehr!?“ hinwies. Zunächst sind Schäume keine komplett neuen Bauformen, sondern orientieren sich an den zellularen Formen der Natur. Zugleich ist Schaum nicht gleich Schaum: Verschiedene Materialien und Herstellungsverfahren führen zu unterschiedlichen Eigenschaften und Anwendungsmöglichkeiten. Die grundsätzlichen Vorteile des Schäumens beim Spritzguss sind die geringere Viskosität des Materials (Zähflüssigkeit) und der Verzicht auf den Nachdruck, entsteht der Druck doch im Inneren – eben durch das Aufschäumen. Somit werden unter anderem eine schnellere Füllung und niedrigere Temperaturen des Materials und des Werkzeugs, möglich. Wichtig ist es, bei der Konstruktion der Komponenten bereits die Charakteristika des Schaums im Blick zu haben und die gebotenen Vorteile zu nutzen. Zugleich hat die Verwendung von Schaum auch gewisse Nachteile, mit denen umgegangen werden muss. Beispiele sind die typischen Randausprägungen in Kissenform oder Schlieren auf der Oberfläche. Je nach Anwendungssituation lassen sich hier unterschiedliche Lösungsansätze finden.

Unternehmensführung bei Formconsult in Schmalkalden

Bewegte Zeiten

Christen Merkle, Geschäftsführer von AHP Merkle, zeichnete in einem lebendigen Vortrag mit dem Titel „Was mich bewegt.“ ein Bild der Situation, in der sich kleine und mittlere Unternehmen wie der Spezialist für Zylinder aus dem baden-württembergischen Gottenheim momentan befinden. Neben der schwierigen Lage der Wirtschaft beschäftigen die Unternehmer der schlingernde Kurs der Politik und der Wandel gesellschaftlicher Einstellungen. Unternehmerische Entscheidungen, zum Beispiel Investitionen, brauchen aber langfristige Planbar- und Verlässlichkeit der Rahmenbedingungen, zum Beispiel der Wirtschaftspolitik. Hier gebe es, vorsichtig formuliert, Verbesserungspotentiale. Die Krisenhaftigkeit der Zeit und die Strukturprobleme wie der Fachkräftemangel beiseite präsentierte sich Christen Merkle als leidenschaftlicher, in der Region verwurzelter Familienunternehmer, der sich seiner sozialen und ökologischen Verantwortung bewusst ist. Ein Beispiel der Vorzüge einer solchen langfristigen Orientierung zeigte sich in der Pandemie: Merkle verzichtete auf Maßnahmen wie Kurzarbeit und setzte auf Forschung und Entwicklung, von der das Unternehmen nun mir erfolgreichen Produkten profizieren kann.

Den letzten Input gab dann Stephan Hoffmann, Geschäftsführer der Formconsult Werkzeugbau GmbH aus Schmalkalden, dessen Vortrag in eine Firmenbesichtigung mündete. Das Unternehmen stellt hochpräzise Werkzeuge her und hat sich auf Mehrkomponenten- und Zweifarbentechnik spezialisiert. Der innovative Werkzeugbau beruhe auf drei Säulen, wobei die Entwicklung, Konzipierung und die Simulierung erste Säule wäre. Neben der Kooperation mit Partner wie der HSM und der GFE sorge hierbei auch die Unterstützung von Start-Ups für die Freisetzung innovativer Potentiale. Die zweite Säule besteht im Werkzeugbau selbst, seiner Spezialisierung und der Fertigung. Aspekten der Nachhaltigkeit könne hier genüge getan werden, indem bei den Produktionsstätten auf Energieeffizienz und die Nutzung erneuerbarer Energien – wo möglich – zurückgegriffen werde, sei es durch Solarpanels oder die Klimatisierung über hocheffiziente Wärmepumpen. Die dritte und letzte Säule ist das Technikum, was der Qualitätssicherung dient. Bemusterung, Vermessung und u.a. die Dokumentation sollen neben einer beständigen Zertifizierung die Qualität der Produktion und der Produkte garantieren.

Gruppenbild im Foyer des Hauptgebäudes (© Fabian Diehr/wortundform)

Das Resümee der Veranstaltung legt einen Blick auf den Anfang der Veranstaltung nahe, also die Begrüßungsworte von Prof. Thomas Seul: Sein Plädoyer war die konstruktive Zusammenarbeit von Hochschulen für angewandte Forschung und Unternehmen. Durch diese Kooperation könnte die Expertise der akademischen Forschungsbereiche genutzt werden und so letztlich beide Seiten profitieren. Eine andere Möglichkeit der Zusammenarbeit sind übergreifende Netzwerktreffen wie das Praxisforum, das von Partner aus der Wirtschaft (FDU Hotrunner, HoliMaker, Meusburger, Moulding Expo, Partool und Process Garding) gesponsert und somit in dieser Ausrichtung dankenswerterweise möglich gemacht wurde.

PS: Der Bericht zum vorherigen VDWF-Treffpunkt Werkzeugbau


[i] https://www.aluminium-journal.de/druckguss-bmw-setzt-auf-mehrplatten-werkzeugtechnik

[ii] https://www.bmwgroup-werke.com/landshut/de/aktuelles/2023/erster-guss-in-neuer-high-tech-leichtmetallgiesserei.html

Daten, Archive und Analysen: Was ist Data Analytics?

Daten, Archive und Analysen: Was ist Data Analytics?

Mit der Sammlung von Daten, dem umgangssprachlichen Gold unseres Zeitalters, haben wir uns schon oft befasst. Die Unmenge an Datenmaterial, die infolge der Digitalisierung unter anderem der industriellen Produktion und Teilen der menschlichen Kommunikation zur Verfügung steht, eröffnet unserer Gegenwart völlig neue Wege und Tiefen der Analyse. Kurzum erlauben es die Expansivität moderner Sensorik und die Steigerung der Rechenleistung und Verarbeitungskapazitäten, große Mengen an Informationen aufzunehmen, zu ordnen und Erkenntnisse aus den gesammelten Daten zu gewinnen.

Mit dieser Entwicklung erlangt der spezifische Forschungsbereich der Data Analytics immer mehr an Bedeutung. Hierbei geht es um die Werkzeuge, die Technologien und Prozesse, mit deren Hilfe Muster, Verläufe und Problemlösungen gestützt auf ein Konvolut an Daten ermittelt werden können. Neben der eigentlichen analytischen Auswertung ist die Sicherung der Qualität der Datensätze und eine effiziente Archivverwaltung für die weiteren Schritte elementar.

Können elektrische Schafe halluzinieren?

Mit der Verbreitung KI-gestützter Technologien traten Phänomene in den Fokus der Öffentlichkeit, die der Data Analytics thematisch nahestehen: Infrage steht vereinfacht formuliert, ob zum Beispiel Chat GPT lügen kann. Bei manchen Anfragen kam es zu Ausgaben, die schlicht falsch waren, unter anderem ganz offensichtlicher Fehlurteile wie die Anzahl bestimmter Buchstaben in einem Wort. Dieses Phänomen wurde als Halluzination beschrieben und erhielt einige Aufmerksamkeit: Die Ermittlung der Ursache der Fehlausgabe hatte das Problem der Komplexität des Programms, aber nicht nur der Architektur der künstlichen Intelligenz mit seinen Legionen an Knotenpunkten und Schichten, sondern auch in Hinsicht der Datenmengen und deren komplexer Verwaltung. Letzterer Aspekt zielt auf die Archivstrukturen und den Umgang mit den riesigen Datenmengen und -banken, die großen Sprachmodellen wie Chat GPT für den Trainingsprozess zugrunde liegen.

Neben der Frage, warum diese Fehler überhaupt aufkamen, war auch offen, an welchen Zeitpunkt sie entstanden. Die Programme selbst waren selbstredend nicht zur Ausgabe falscher Antworten angehalten, gleichwohl verlangt der Umgang mit der natürlichen Sprache und manche Formen der Anwendung eine gewisse Qualität der Kreativität, also der Dehnung und Übertragung, die die Programme leisten müssen. Zum Beispiel bei dem Wunsch, den dritten Akt von Romeo und Julia in der Sprache modernen Ostküsten-HipHops zu reformulieren – ein solches Werk existiert bislang nicht, das Modell muss also selbst kreativ werden um diese Anfrage zu beantworten. Es werden große Anstrengungen unternommen, die Anzahl der Halluzinationen von Modellen zu minimieren, was auch die Relevanz zeigt, wie Daten verwertet und verarbeitet, Datensätze gereinigt oder auch korrumpierte Daten aussortiert oder gerettet werden. Und weiter, wie komplexe Technologien mit einem Gros an Datensätzen interagieren. Und hier setzt die Data Analytics an.

Was ist Data Analytics?

Die Data Analytics befasst sich mit der Analyse von Daten und deren Auswertung zu unterschiedlichen Zwecken. Sie ist ein multidisziplinäres Forschungsfeld zwischen der Informatik, der Mathematik und der Statistik sowie weiterer Bereiche, die produktiv verknüpft werden. Generell lässt sich die Data Analytics in vier Ansätze unterteilen: Die deskriptive Analyse versucht zu beschreiben, welche Veränderungen bereits geschehen sind. Dagegen zielt die diagnostische Analytik auf eine Erklärung, warum etwas wie passiert ist. Die letzten beiden Zugänge schlagen eine andere Richtung ein: Aus den Daten Prognosen über zukünftige Entwicklungen abzuleiten ist das Ziel der prädiktiven Analysen. Diese Prognose wird im Falle der präskriptiven Analytik noch durch die optimale Reaktion ergänzt. Die unterschiedlichen Ansätze verfolgen nicht nur verschiedene Ziele, sie gehen auch anders mit den Daten um und haben differenzierte Ansprüche an die Daten.

Seit gut zwei Jahren hat Constantin Pohl die Professur für „Data Analytics“ an der Fakultät für Informatik der Hochschule Schmalkalden inne und nutzt die Gelegenheit seiner Antrittsvorlesung, ein Licht auf verschiedene Facetten seiner Forschung und seiner Lehre zu werfen. Bereits in seiner Dissertation befasste er sich mit der Frage, wie sich moderne Hardware zur Beschleunigung von Datenbank-Anfragen optimal nutzen ließe. Anders formuliert war das Thema, wie Datenverwaltungen strukturiert und organisiert sein müssen, um Ressourcen und Kapazitäten bedarfsgerecht zu nutzen und Suchanfragen effizient zu verarbeiten. Die Datenmengen auf Servern nehmen einerseits beständig zu und macht Suchvorgänge aufwändiger und langsamer, zugleich erlauben die vielen Kerne moderner Prozessoren über das Multithreading parallele Verarbeitungen. So gilt es, Managementsystem für Datenbanken und Datenströme zu entwickeln, die den neuen Anforderungen gerecht werden und zudem die technischen Möglichkeiten optimal nutzen.

Öl-Druck und Reparaturzyklen

In einem zurückliegenden Forschungsprojekt widmete sich Constantin Pohl der Frage, wie KI-Modelle für die Wartung von industriellen Anlagen und Maschinen wie einem Druckluftkompressor genutzt werden können. Das Ziel ist, Wartungsarbeiten an Verschleißteilen nicht mehr an fixen Zeitpunkten oder nach Werkzeugausfällen anzusetzen, sondern vorausschauend anhand konkreter und in Echtzeit erhobener Daten der laufenden Maschinen. Um diese Optimierung zu realisieren ist eine Prognose wichtig: Anhand von Sensordaten sollen Aussagen über die Zukunft getroffen werden, zum Beispiel das ein Filter noch 22 Stunden halten wird, bevor er gewechselt werden sollte. Hieran ließen sich dann entsprechende Reparaturmaßnahmen orientieren.

Die Ausgangsbasis sind wieder verschiedene Sensoren, welche die Maschinen anhand unterschiedlicher Parameter vermessen. In dem konkreten Projekt wurden 26 Merkmale sensorisch erfasst, neben der Temperatur und der Ölqualität auch der Differenzdruck zwischen verschiedenen Filtern. Bevor mit diesen Daten aber Aussagen getroffen werden können, mussten die Algorithmen anhand der Ausfälle der Kompressoren trainiert werden. In Regressionsmodellen wurden unterschiedliche vorverarbeitete und ausgewählte Datenmengen genutzt, um Ausfälle vorherzusagen. Wichtig ist dabei zu verstehen, dass es hier nicht um eine Größe wie die Temperatur ging, um diese Prognose zu machen: Die Modelle berücksichtigen viele Daten und ihre Verläufe, auch über eine längere Zeit, und verknüpften diese zugleich. Diese komplexen Berechnungen sind die spezifischen Leistungen der KI-Modelle, die zur Erkennung von Mustern und Strukturen sowie Abweichungen geeignet sind.

Am Ende des Projektes ließ sich die Prognostizierbarkeit grundsätzlich umsetzen. Mit einem entwickelten Ölsensor und der Nutzung der regulären Sensorik konnten die fehlerhaften Vorhersagen auf 0,09% reduziert werden. Auch die maximalen Abweichungen waren bei einer Gesamtzahl 158.000 Vorhersagen nur in einem Fall bei sechs Tagen und ansonsten bei einem Tag. Der entscheidende Faktor für die erfolgreiche Ermittlung und Prognose ist der Ölsensor.

Datenströme

Neben dieser Thematik befasst sich Professor Pohl auch mit Fragen des Stream Processing: In der Datenverarbeitung lassen sich zwei Ansätze unterscheiden, die sich für verschiedene Anwendungen und Ziele eignen. Der klassische Weg ist die Paketlösung: In einem bestimmten Zeitraum werden Daten erfasst und dann als Block archiviert. Im Anschluss können diese Daten verarbeitet und ausgewertet werden. Offensichtlich ist hierbei die große Latenz, also die Zeitspanne, die zwischen der Messung und den Ergebnissen einer Auswertung steht. Das Stream Processing zielt dagegen auf die Auswertung der Datenströme in Echtzeit, wobei durch diesen Fokus andere Imperative der Verarbeitung wichtig werden.

Die Analyse von Datenströmen steht vor der Herausforderung, eine permanente Aufnahme und Verarbeitung zu gewährleisten. Die Auslastung muss so gestaltet werden, dass durch die Interaktion verschiedener Komponenten keine Flaschenhälse oder Stausituationen entstehen. Kurzum geht es darum, effiziente Strukturen zu etablieren, die eine möglichst permanente und effiziente Verteilung und Verarbeitung erlauben und die Kapazitäten entsprechend nutzen.

Constantin Pohl befasst sich mit der Entwicklung und Erprobung von Stream Processing Engines. Im konkreten Fall ging es um die Vorhersage des Zielhafens und der Ankunftszeit. Die pendelnden Schiffe geben während ihren Reisen permanent Informationen weiter, zum Beispiel über ihre Position, ihre Geschwindigkeit und den Schiffstyp, die in einem komplexen Modell für Vorsagen ihrer Zielhäfen genutzt werden können. Kurzum bietet sich so die Möglichkeit, über eine Einschätzung einer komplexen Sachlage mit vielen Akteuren und zu beachtenden Parametern Strategien der Optimierung der Zielhäfen zu entwickeln.

Fußstapfen

Constantin Pohl hat bislang noch eine Juniorprofessur an der Hochschule Schmalkalden, die im Rahmen des bundesweiten Projektes „FH-Personal“ geschaffen wurde. Mit seiner Berufung wurde die Professur von Martin Golz zu einer Schwerpunktprofessur, die es diesem erlaubt, das Lehrdeputat zu senken und sich vermehrt der Forschung zu widmen.

Professor Pohl kann seine Arbeit in einem laufenden Lehr- und Forschungsbetrieb aufnehmen und den Lehrstuhl intensiv kennenlernen. Ziel ist es, die Reibungsverluste zu minimieren und durch geteilte Wege strukturelle Kontinuitäten zu etablieren. Er unterrichtet neben Grundlagen der Daten- und Wissensverarbeitung auch Deep Learning Architekturen und Wissensentdeckung in Datenbanken. Als Mitglied im Prüfungsausschuss der Fakultät Informatik widmet er sich gemeinsam mit den anderen Mitgliedern den Problemen der Studierenden in Prüfungsangelegenheiten. Auch am Hochschulinformationstag und dem Absolvententreffen stellte er sich und seine Forschung dem interessierten Publikum vor.

Der 3.E-Science Day an der Hochschule Schmalkalden

Der 3.E-Science Day an der Hochschule Schmalkalden

Zum nunmehr dritten Mal wurde von der Fakultät der Elektrotechnik zum E-Science Day geladen. Ziel dieser Veranstaltung ist es zunächst, einen Überblick über die Forschungsaktivitäten an der Fakultät, also über unterschiedliche aktuelle Themen und Projekte, zu geben. Zudem werden Kooperationspartner aus der Wirtschaft und von wissenschaftlichen Institutionen eingeladen und können sich vorstellen. Ferner besteht der Zweck des E-Science Days darin, die Öffentlichkeit von der Schmalkalder Stadtgesellschaft bis hin zu jungen Menschen, die gerade auf der Suche nach einem passenden Studiengang sind, aufmerksam und neugierig auf die Forschungsthemen und -vorhaben zu machen.

Messstationen, Künstliche Intelligenz und Computerchips

Nach der Begrüßung durch die Professoren Roy Knechtel und Silvio Bachmann im Namen der Fakultät Elektrotechnik wurde der erste Vortrag von Professor  Martin Schreivogel gehalten, der an der HSM die Professur für die Grundlagen der Elektrotechnik innehat. Dieser nutzte die Gelegenheit nicht nur dazu, kurz in das Thema der Gassensorik einzuführen, sondern auch, ein Projekt zur Luftgütevermessung via kompakter Messboxen vorzustellen. Das zu lösende Problem war die Ermittlung der Luftgüte in Innenstädten: Anstelle von punktuellen Messungen ist es für eine Beurteilung zweckmäßiger, über viele, im Stadtraum verteilte Messstationen ein detailliertes und dynamisches Bild der Verteilung zu erhalten, also die Luftströme und die Effekte der städtischen Architektur mit in Betracht zu ziehen. Hierfür waren ebenso viele technische Herausforderungen der Sensorik insbesondere hinsichtlich der Kompaktheit der Geräte sowie die Kosteneffizienz zu meistern, die eine Vielzahl solcher Stationen erst möglich macht. Zudem umriss Martin Schreivogel ein aktuelles Vorhaben, das in der Optimierung bereits laufender Wasserstoffanlagen besteht. Eine der zentralen Aufgabe der Energiewende ist die Speicherung und der Transport von Energie, und eine Lösung dafür ist die Transformation in Wasserstoff. Die Forschungsfrage ist nun, wie sich die Prozesse der Elektrolyse unter Realbedingungen optimieren lassen.

Im Anschluss gaben Professorin Maria Schweigel, Inhaberin der Professur für autonome Systeme, und Lisa Schneeweiß einen Einblick in den aktuellen Forschungsstand des Projektes BauKIRo. Dieses Forschungsvorhaben findet in Zusammenarbeit mit dem Lehrstuhl FAPS der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) über eine industrielle Gemeinschaftsforschung mit dem Deutschen Beton- und Bautechnik-Verein E.V. (DBV) statt und wird vom BMWK gefördert. Die Idee hinter dem Projekt ist digitale Herstellung von Bauplänen, für deren Vermessung nicht nur Drohnen, sondern auch Applikationen genutzt werden, die auf künstliche Intelligenz zurückgreifen. Ein Zwischenergebnis besteht in der Notwendigkeit, die Drohnen, die den Baufortschritt prüfen und dokumentieren sollen, auf die spezifische Umgebung sich im Bau befindlicher Gebäude anzupassen. Hierbei geht es zum Beispiel um die Gefahr, die von herumhängenden Kabeln verursacht werden. Ein anderes Problem ist die Datenverarbeitung der Bilder, wodurch fehlerhafte Punktwolken entstehen können. Somit hat die Forschung neue Aufgaben, ihren Ansatz anzupassen und zu optimieren.

Über das von der Carl-Zeiß-Stiftung geförderte Projekt „Material innovations for wafer-level packaging technologies“ informierte Professor Roy Knechtel, Inhaber der Professur für Autonome Intelligente Sensoren. Dieses Verfahren bietet die Möglichkeit, im Vergleich zur klassischen Herstellung kleinere und kosteneffizientere integrierte Halbleiterbauelemente herstellen zu können. Üblicherweise werden die dünnen Siliziumscheiben, die Wafer, zunächst getrennt und im Anschluss in einem komplexen Prozess mit einem Umgehäuse und elektrischen sowie Montageanschlüssen versehen. Im „wafer-level packaging“-Verfahren indes werden die Komponenten schon auf dem Wafer selbst aufgebracht und eingehaust. Durch diese 3D-Integration lassen sich noch kleinere, leistungsstarke Chips herstellen, wie sie zum Beispiel für Smartphones der neueren Generationen Verwendung finden. Ein anderes Beispiel eines solchen Chips sind die Infrarot-Sensoren der Smartwatch eines namhaften Herstellers. In dem Forschungsprojekt ergeben sich zugleich enge Kooperationsmöglichen mit der Materialwissenschaft und den technischen Möglichkeiten von 3D-Druck-Systemen.

Den Abschluss des ersten Blocks machte dann der Vortrag Norbert Greifzus vom Team der „Eingebetteten Diagnosesysteme (EDS)“. Er stellte eine Kooperation zwischen der Elektrotechnik und dem Maschinenbau vor, bei dem es um den Einsatz künstlicher Intelligenz bei Verfahren des Spritzgusses geht. Kurzum können verschiedene Sensordaten und speziell trainierte Programme dabei helfen, fehlerhafte Teile zu prognostizieren und so rechtzeitige Eingriffe in die Fertigung vorzunehmen, um diesen Ausschuss zu vermeiden. Hier werden unter anderem Messungen von Temperatur und Druck verwandt und auf Basis der Verläufe vieler vorheriger Messungen bewertet. Wichtig ist hierbei zugleich, dass die Modelle der künstlichen Intelligenz das Zustandekommen ihrer Beurteilung transparent machen, um so letzter die Akzeptanz bei den Nutzenden zu erhöhen. Dies wäre zum Beispiel über eine graphische Ausgabe von Markierungen an Verlaufskurven der Temperatur oder des Drucks möglich.

Infrarotsensoren, Mikrostrukturen und 3D-Drucker

Der zweite Teil des E-Science-Days wurde mit einem online-Vortrag von Rachel Gleeson vom belgischen Unternehmen Melexis eingeläutet. Sie kooperiert in ihrer Forschung mit dem in Erfurt ansässigen Unternehmen X-FAB sowie mit Roy Knechtel. In ihrem Beitrag konturierte sie zunächst die Breite der Anwendungsmöglichkeiten von miniaturisierten Infrarotsensoren, denen über die Messung der thermischen Strahlung die präzise berührungslose und somit schnelle Ermittlung von Temperaturen möglich ist. Dieser Auffächerung zuvor ging ein Blick auf die Komplexität der Integration der Komponenten in eines Mikro-Elektro-Mechanischen Systems (MEMS) bei einer gleichzeitigen Minimierung des Platz- und Stromverbrauchs. Wichtig ist hierbei zu beachten, dass es unterschiedliche Infrarotsensoren für verschiedene Anwendungen gibt, zum Beispiel unterscheiden man Sensoren für punktuelle Messungen und bildgebende Sensorarrays. Je nach Anwendungsfeld unterscheiden sich auch die Ansprüche an Präzision: So nimmt sich die erforderte Exaktheit auf dem Gebiet medizinischer Anwendungen um einiges höher aus, als bei Produkten für Konsumenten wie zum Beispiel Fitnesstrackern oder Heimelektronik.

Die Infrarotsensoren finden in unserer Gegenwart bereits breite Verwendung: Zum einen in Geräten wie Smartphones und -watches, die so die Körpertemperatur ermitteln können. Damit ist die Health-Tech ein relevantes Anwendungsfeld, das noch an Bedeutung gewinnen wird. Ein zentraler Pluspunkt in diesem Bereich medizinischer Anwendungen ist, dass die Temperaturmessung ohne direkten Kontakt funktioniert. Andere Gebiete sind zum Beispiel die wärmesensorische Vermessung von Gebäuden, was unter anderem dem Auffinden von Stellen dient, an denen Wärme verloren geht. Ein Nebeneffekt der Vermessung über Infrarotsensoren ist, dass sie ihre Daten anonymisiert erheben, sind doch Personen detektier aber nicht identifizierbar. Dies macht die Sensoren auch für die Überwachung und Automation von Gebäuden nützlich, wie zum Beispiel bei der smarten Steuerung von Licht- oder Heizungsanlagen, die z.B. in Bürogebäuden Anwendung findet.

Stephanie Lippmann forscht an der Friedrich-Schiller-Universität Jena zu Themen der Materialwissenschaften und hat hier zurzeit eine Vertretungsprofessur für metallische Werkstoffe am Otto-Schott-Institut für Materialforschung inne. Grundsätzlich widmet sie sich Aspekten der Metallphysik, genauer thermodynamischen und kinetischen Prozessen bei mikroskopischen Strukturveränderungen der Werkstoffe während Zustandsänderungen, sogenannten Phasen­umwandlungen. Die Thermodynamik befasst sich zunächst als Teilgebiet der Physik mit Fragen der Umwandlung und Änderung von Energie innerhalb eines oder mehrerer Systeme.

Die Kinetik betrachtet die Zeitabhängigkeit, also die Geschwindigkeit, dieser Umwandlungsprozesse. Im Fokus von Stephanie Lippmanns Forschung wiederum stehen die mikrostrukturellen Prozesse in metallischen Legierungen bei besonders schnellen Phasenumwandlungen, also wenn z.B. eine Schmelze erstarrt, aber auch bei Festkörperphasenübergängen während rascher Wärmebehandlungen. Den Prozessen dieser „rapid phase tranformations“ im Material versucht sie mittels einer spezifischen Testanlage und unter besonderen Konditionen nachzugehen, die eine sehr schnelle Erhitzung und Abkühlung der Testobjekte bietet. Um diese Umwandlungsprozesse genauer zu verstehen, verwendet Stephanie Lippmann die thermo-kinetische Modellierung, mit dem Ziel, die Materialstruktur, das sogenannte Gefüge, gezielt anhand der Zusammensetzung und der Wärmebehandlung einstellen zu können. Über die Steuerung des Gefüges ist es schließlich möglich, die Eigenschaften einer Legierung für die gewünschte Anwendung zu optimieren. 

Für die Elektrotechnik ist diese Forschung der benachbarten Disziplin gerade deswegen so relevant, weil solche strukturellen Umwandlungsprozesse auch bei der Herstellung und Qualifizierung von mikroelektronischen Schaltkreisen auftreten. Ein grundlegenderes Verständnis hilft unter anderem auch die Ursachen von Mängeln im elektronischen Bauteil zu verstehen. Da in den zunehmend komplexeren, und weiter miniaturisierten Objekten die Anforderungen an die Reinheit und Zuverlässigkeit der verwendeten metallischen Komponenten immer weiter steigen, ist es hier zentral, voneinander zu lernen. Zu diesem Zweck wurde im Rahmen des bereits vorgestellten Projekts „Material innovations for wafer-level packaging technologies“ eine Kooperation zwischen Friedrich-Schiller-Universität Jena und der Hochschule Schmalkalden auf den Weg gebracht.

Den offiziellen Teil des E-Science-Day abrunden durfte Martin Hedges von der Neotech AMT GmbH aus Nürnberg, wobei die Abkürzung für Advanced Manufacturing Technologies for 3D Printed Electronics steht und sich das Unternehmen entsprechend vor allem im Bereich des 3D-Drucks von komplexen elektronischen Bauteilen einen Namen gemacht hat. Durch diese Expertise ergab sich auch die Kooperation mit der elektrotechnischen Fakultät und mit Roy Knechtel. Wie dieser schon in seiner einführenden Vorstellung klarmachte, ist eine Vision in der Elektrotechnik, ein Gerät zu haben, dass vollständige elektronische Bauteile wie Schaltungen herstellen kann. Die 3D-Drucker, die Neotech entwickelte, kommen diesem Ziel schon recht nahe.

Der 3D-Druck von elektronischen Bauteilen hat allen voran den Vorteil, ein schnelles und günstiges Prototypingverfahren  zu sein und zugleich eine Vielfalt an möglichen Formen zu gestatten. Hierbei kommt hinzu, dass die 3D-Drucker von Neotech verschiedene Verfahren des 3D-Drucks als Funktionen bieten und sich so die Anwendungsbreite durch die Kombination noch deutlich steigern lässt. Ein Beispiel der neuen Möglichkeiten war die Herstellung einer Glühbirne: Bei üblichen Glühbirnen sind neben den Materialien, die das Produkt bei der Herstellung bedarf, auch die Ressourcen einzupreisen, die das Recycling verlangt. Der 3D-Druck lässt es hier zu, beide Enden bereits im Design zu bedenken und so nachhaltige Lösungen zu ermöglichen.

Im kleineren Rahmen wurde im Anschluss in den Räumen der Fakultät Elektrotechnik die Einweihung eines solchen 3D-Druck-Systems feierlich begangen, an dem Forschenden nun den Möglichkeiten und Grenzen dieser Herstellungsverfahren nachgehen werden. Ziel ist es gemäß der Vision, eine rein additive Herstellungsweise zu entwickeln, die es erlaubt, ganze elektronische Bauteile wie Sensoren zu produzieren. Möglich machte dies eine Förderung von der Europäischen Union.

risING – Der Tag der Ingenieurwissenschaften an der Hochschule Schmalkalden

risING – Der Tag der Ingenieurwissenschaften an der Hochschule Schmalkalden

Mitte Juni durfte die Hochschule Schmalkalden den Tag der Ingenieurwissenschaften unter dem Titel „risING. Regionale Innovationen, globale Transformationen“ ausrichten. In einem ganztägigen, abwechslungsreichen Programm präsentierten sich die Thüringer Ingenieurwissenschaften zugleich sich selbst und der interessierten Öffentlichkeit. In Vorträgen konnten sich verschiedene Projekte aus Forschung und Lehre vorstellen und Nachwuchswissenschaftler:innen in einem Pitchwettbewerb beweisen. Abgerundet wurde das Programm durch eine Präsentation aller eingereichten Poster und eine Ausstellung von Kooperationspartnern im Foyer. Prägend in allen Hinsichten blieb die thüringenweite, kooperative Ausrichtung der Ingenieurwissenschaften, die auch ein Markenkern der Allianz Thüringer Ingenieurwissenschaften darstellt.

Die Allianz THÜR ING ist ein Bündnis von sieben Thüringer Hochschulen mit ingenieurwissenschaftlichen Studiengängen, das es sich zu Aufgabe gemacht hat, die Bekanntheit der Ingenieurwissenschaften in der Öffentlichkeit zu steigern. Ziel dieser Kooperation ist es zudem, junge Menschen für das Studium der Ingenieurwissenschaften zu begeistern und zu diesem Zweck die Vielfalt der Studiengänge, die Anwendungsnähe und die innovative Relevanz hervorzukehren.  Ab von vielen weiteren wissenschaftskommunikativen Offerten sind es die Tage der Ingenieurwissenschaften, die eben solche Impulse setzen sollen. Neben der Allianz THÜR ING unterstützte die Thüringer Ingenieurskammer das Organisationsteam der Hochschule Schmalkalden bei der Umsetzung des Tages, zum Beispiel bei der Bewertung der Pitches und der Preisverleihung am Ende der Veranstaltung.

Um was es geht: Die Relevanz der Ingenieurwissenschaften

In seiner Begrüßungsrede wies Professor Gundolf Baier, Präsident der Hochschule Schmalkalden und Sprecher der Allianz THÜR ING, auf die verschiedenen gesellschaftlichen Herausforderungen unserer Gegenwart hin, auf welche die Ingenieurwissenschaften innovative Antworten finden müssten und auch würden: Neben der Demographie seien dies die Digitalisierung und die Dekarbonisierung – kurz die großen D‘s. Gerade im Falle der letzten beiden Herausforderungen werden die Potentiale der Ingenieurwissenschaften deutlich: Die techno- und ökologischen Transformationsprozesse prägen bereits unsere Gegenwart und unseren Alltag von der Kommunikation über Behördengänge bis hin zu Einkäufen, und werden dies in Zukunft wohl immer stärker tun. Darüber hinaus spielen die D’s aber auch eine immer größere Rolle für die Wirtschaft und den Standort Deutschland.

Hochschulen angewandter Wissenschaften nehmen die letzten beiden Impulse gesellschaftlicher Transformationen in ihrer Forschung auf und versuchen, neben ebenso relevanten Aspekten von Grundlagenarbeiten, anwendungsnahe Lösungsansätze für Gesellschaft und Wirtschaft zu entwickeln. Diese Implementierbarkeit ihrer Forschungsarbeiten und die Arbeit an konkreten Problemen ist ein gewichtiges Pfund, die mehr in die Wahrnehmung der Öffentlichkeit gerückt werden soll.

Anlässe wie die Tage der Ingenieurwissenschaften lassen sich nutzen, um mit der Öffentlichkeit in Kontakt zu treten und diese über die Tätigkeiten und die Sinnhaftigkeit der Ingenieurwissenschaften zu informieren: Was sind die Themen der Ingenieur:innen, vor welchen Herausforderungen stehen sie und wie gehen sie mit den Aufgaben um? Welche Bereiche umfasst das ingenieurwissenschaftliche Spektrum und wie gestalten sich die internen und externen Austauschbeziehungen, zum Beispiel zu den Forschungseinrichtungen von Unternehmen? Wie lassen sich Patente einrichten, Start-Ups gründen oder Forschungsdaten in der wissenschaftlichen Community teilen? Der Tag der Ingenieurwissenschaften nutzte die Gelegenheit, um ein Licht auf diese verschiedenen Aspekte zu werfen.

risING: Impulse der Politik

Der Tag der Ingenieurwissenschaften steckte sein thematisches Portfolio bereits in seinem Titel „risING. Regionale Innovationen, globale Transformationen“ ab. Einerseits wird hierbei ein Bezug zur RIS-Strategie der Landesregierung hergestellt, die wiederum auf eine regionale Innovationsstrategie abzielt: Im Hinblick auf verschiedene Felder und thematische Komplexe rund um Zukunftsfragen wurden Akteure der Thüringer Forschungslandschaft anhand ihrer Schwerpunkte und Kompetenzen markiert. Das Ziel ist, dass die beteiligten Institutionen und Personen zu verknüpfen und den Austausch an Wissen und Expertise anzuregen, um und so schließlich die Forschung gemeinsam voranzutreiben. In Kooperationen lassen sich die Potentiale ganz unterschiedlicher Akteure und Regionen Thüringens produktiv nutzen, so die dahinterstehende Idee. In einem kleinen Bundesland wie Thüringen kann Forschung keine One-Man-Show sein, vielmehr legen die kurzen Wege eine enge, produktive Zusammenarbeit und die intensive Vernetzung nahe.

Kooperative Projekte sind in der Forschungslandschaft zwar keine neue Erscheinung, doch nimmt die Zusammenarbeit von Hochschule, außeruniversitären Forschungseinrichtungen und Partnern aus Wirtschaft und Gesellschaft immer mehr zu. Da sich so die verschiedenen Schwerpunkte unterschiedlicher Akteure einbringen und die Beteiligten die Heterogenität der Forschungslandschaft gewinnbringend nutzen können, bieten sich diese Kooperationsprojekte zur Präsentation ingenieurwissenschaftlicher Aktivitäten und deren interdisziplinärer Potentiale an.

Forschungsprojekte: Intelligente Mobilität und 3D-Elektronik-Systeme

Am Tag der Ingenieurwissenschaften konnte Professor Frank Schrödel von der Hochschule Schmalkalden die hochschulübergreifende Forschungsgruppe vernetztes und kognitives Fahren, kurz CoCoMobility, vorstellen. Neben der HSM sind die Fachhochschule Erfurt, die Technische Universität Ilmenau und die Bauhaus-Universität Weimar an diesem Forschungsprojekt zum Thema intelligente Vernetzung moderner Mobilität beteiligt. Die Vielfältigkeit der Kooperationspartner spiegelt die Differenziertheit der hier einbegriffenen Themen: Neben der intelligenten Verkehrsinfrastruktur und der Vernetzung von Fahrzeugen, Infrastruktur und Testumgebungen arbeitet die Forschungsgruppe an Effekten auf den Verkehr, Aspekten der Sicherheit sowie an Einflüssen der Umwelt.

Die Umsetzung der neuen Mobilität angefangen beim autonomen Fahren bis hin zur smarten Verkehrslenkung bedarf der Kommunikation, zum Beispiel zwischen den Mobilen und der Infrastruktur. An dieser intelligenten Konnektivität forscht der Projektpartner TUI. Die BUW fokussiert sich auf den Ablauf des Verkehrs, also Fragen der Vorhersagbarkeit und u.a. individuell als angenehm empfundener Abstände. Die Steigerung der Verkehrssicherheit vulnerabler Gruppen steht im Blickfeld der FHE. Und die HSM widmet sich der menschenzentrieten autonomen Entscheidungsfindung im Kontext der autonomen Mobilität. In diesem kooperativen Forschungsprojekt können die unterschiedlichen Partner ihre Expertise einbringen.

Professor Roy Knechtel nutzte die Gelegenheit, um den neuen Forschungsschwerpunkt 3D-Elektronik-Systeme der Hochschule Schmalkalden vorzustellen. Die Welt der Mikroelektronik ist noch heute weitgehend eine Scheibe, sind doch jene dünnen Siliziumscheiben, die sogenannten Wafer, die Grundbausteine. Dennoch lässt sich ein Trend hin zur Dreidimensionalität feststellen: Um die Funktionen moderner smarter Geräte wie Handys oder Uhren erfüllen zu können, müssen Chips, Sensoren und andere technische Komponenten in die dritte Dimension wachsen: Kurzum geht es darum, hochkomplexe Bauteile zu stapeln und zu verbinden, um so immer kompaktere, effizientere Komponenten zu erzeugen und den Erfordernissen von Funktionalität, Formfaktor, Passgenauigkeit und Rentabilität gerecht zu werden.

Das Ziel des Projektes ist die Herstellung komplexer mikroelektronischer Bauteile direkt auf dem wafer, um so auch die Wertschöpfung einer bislang recht globalisierten Industrie vor Ort halten zu können. Um die für diese Bauteile notwendige Präzision erreichen zu können, muss ein Fokus auf den Materialien und der Strukturanalyse ihrer Charakteristika liegen. Neben Martin Seyring aus dem Team von Roy Knechtel ist mit Stephanie Lippmann von der FSU Jena und dem dortigen Otto-Schott-Institut für Materialforschung im Projekt für diese Aspekte eingebunden. Aber auch Unternehmen wie X-Fab beteiligen sich als Partner aus der Wirtschaft an diesem Forschungsschwerpunkt.

Nachwuchs: Die vielen Facetten der Ingenieurwissenschaften

Am Tag der Ingenieurwissenschaften gab auch dem akademischen Nachwuchs in unterschiedlichen Hinsichten Raum: Schon vor Längerem gab es einen Call for Poster, der um Einreichungen zu innovativen Themen der Thüringer Ingenieurwissenschaften aufrief. All diese eingereichten Poster wurden im Rahmen einer Präsentation per Slideshow gezeigt und gaben während der Pausen zu Gesprächen Anlass. Zudem wählte eine Jury aus den Einreichungen zwölf aus, die dann am Tag der Ingenieurwissenschaften ihr Poster in einem Pitch vorstellen konnten. Am Ende der Veranstaltung wurden wiederum durch eine Jury, unter anderem mit Vertreter:innen der Ingenieurskammer besetzt, die besten drei Pitches ausgewählt und die Gewinner mit einem Preisgeld bedacht.

Hier ist nicht genügend Platz, alle Beiträge eingehend zu würdigen, daher muss eine Synopsis genügen. Alle Pitches werden in Bälde auf dem Youtubekanal der Allianz THÜRING verfügbar sein, alle Poster sind auf der Seite der Hochschule Schmalkalden im Bereich Forschung zu finden. Zudem werden die Präsentationen, sofern möglich, ebenso auf diesen Seiten veröffentlicht.

Martin Patrick Pauli von der Hochschule Schmalkalden verdeutlichte die Folgen des Data-Leakage-Problems, welches bei dem Training von KI-Algorithmen mit Daten auftreten kann. Letztlich kann es dabei zu überoptimistischen Annahmen der Trefferquoten und damit zu einer Verzerrung der Ergebnisse kommen. Um diese nur scheinbare Lösung zu vermieden, gilt es ebenso aufmerksam gegenüber den Daten und ihrer Aufbereitung zu bleiben wie es nützlich ist, auf verschiedene Kontrollmethoden in der Datenverarbeitung zurückzugreifen.

Christian Diegel von der Technischen Universität Ilmenau stellte in seinem Pitch ein Verfahren vor, beim dem es um eine Optimierung des Laserstrahlschweißens geht. Infolge der hohen Prozessgeschwindigkeit lösen sich aus dem Schmelzkanal Spritzer ab, die dann wieder mehr oder weniger aufwändig entfernt werden müssen. Durch die Addition einer Nebenintensivität nahe dem zentralen Laser ließe sich das Schmelzbad vergrößern und so die Dynamik des Materials verringern, wodurch es wiederum weniger Ablösungen gäbe, so der Ansatz. Durch die Einbringung von Tracer-Teilchen ins Material konnte mithilfe von Hochgeschwindigkeits-Röntgenuntersuchungen die Fluidität des Materials beobachtet und Wege zur Optimierung des Laserschweißens gefunden werden.

Tobias Tefke stellte den Aufbau eines Ethical-Hacking-Labors inklusive einer Capture-the-flag-Umgebung vor, die den Studierenden der Informatik an der Hochschule Schmalkalden helfen soll: In virtuellen Arbeitsumgebungen geht es darum, mögliche Schwachstellen in der Infrastruktur von Softwaresystemen zu finden und die Lücken in der Sicherheit zu schließen. Hier verknüpfen sich also Ansätze der Informatik und der Didaktik.

Analoger nimmt sich das Projekt von Lucas Hauck, ebenfalls von der Hochschule Schmalkalden, aus: Er geht den technischen Herausforderungen, den Möglichkeiten und Grenzen der additiven Fertigung elektronischer Bauteile im dreidimensionalen Raum nach. Der 3D-Druck besticht dabei durch ein Angebot vieler Verfahren und die mögliche Verwendung unterschiedlicher Materialien sowie die Aufbringbarkeit auf multiple Untergründe. Hauck geht diesem Komplex anhand eines 3D-Druck-Systems nach, wobei dessen Flexibilität der möglichen Verfahren das Angebot denkbarer Lösungswege vervielfacht und übersichtlich macht. Um den Aufwand individueller Ansätze zu minimieren, soll ein grundlegender Verfahrenskatalog entwickelt werden, der den Umgang mit solchen Geräten über Designregeln standardisieren und vereinfachen soll.

Wie können Drohnen und künstliche Intelligenz die Bauindustrie unterstützen? In ihrem Pitch umriss Lisa Schneeweiß das Projekt BauKiRo, das sich neben der Aufzeichnung des Baufortschritts auch dem Vergleich der realisierten Bauausführung mit dem Bauplan widmet. Dieser Kooperation der HSM mit der FAU Erlangen-Nürnberg steht vor den Herausforderungen des Einsatzes von Drohnen in komplexen Umgebungen und KI-unterstützten Auswertung von Videoaufnahmen und dem Abgleich mit vorliegenden Plänen. Der Zweck dieses Projektes ist unter anderem, Baumängel frühzeitig zu erkennen.

Sreekar Babu Malli vom ThIWert, dem Thüringer Innovationszentrum für Wertstoffe, befasst sich im Projekt SeRo.inTech mit innovativen Technologien, wertvolle Rohstoffe aus Abfällen zu gewinnen. Er stellte das Kooperationsprojekt der HSN mit der BUW am Beispiel von Sperrmüll vor: In der üblichen Entsorgung von Abfällen bleiben Teile an verwertbaren Materialien und Rohstoffen ungenutzt. Das Projekt versucht unter anderem, die die großen Bestandteile an Holz im Sperrmüll aufzubereiten. Daran schließt sich eine Verteilung der Objekte nach Qualität und möglicher Weiterverwendung an. Ziel ist es, einen möglichst abgeschlossenen Kreislauf der verwendeten natürlichen Rohstoffe zu realisieren und selbst qualitativ minderwertige Materialien nachhaltig zu nutzen.

Michael Werner von der Hochschule Schmalkalden stellte das Innovationslabor KIOptiPak vor, das wiederum ein Teil des KI HUB Kunststoffverpackungen ist. Ziel dieser Kooperation verschiedener Partner aus Wissenschaft und Wirtschaft ist es, Kunststoffverpackungen so zu gestalten, dass die Wiederverwertbarkeit maximiert und die Kunststoffabfälle von Verpackungen minimiert werden. Das KIOptiPak zielt dabei auf die Frage, wie Verpackungen designt sein müssen, um dieses Ideal eines Kreislaufs zu erreichen, zum Beispiel im Hinblick auf das verwendete Material und die direkte Einbeziehung von Vorgaben des Recyclings. Werners Interesse lag dabei auf der Qualität des wiederaufbereiteten Kunststoffreziklats und dem Umgang mit Schwankungen des Materials in der Verarbeitung. Diese Erkenntnisse sollen dann in KI-Modelle einfließen, die anhand der Vermessung des verwandten Materials schon bei laufender Produktion Angaben über die Güte und Verwendbarkeit des Produkts geben können.

Ein Thema, das Aspekte von Forschung und Transfer mit einem didaktischen Ansatz verknüpft, stellte Carsten Gatermann von der TUI vor: Ausgangspunkt war die Frage eines Schülers, ob sich eine vertikale Windenergieanlage auch in Privathaushalten installieren ließe. Neben den elektrotechnischen Fragestellungen galt es, der kreativen Neugier des Schülers Raum zu lassen: Wie müssen Projektarbeiten gestaltet werden, um den individuellen Freiraum der Forschung mit der notwendigen Unterstützung und Orientierung zu verbinden? Der Ansatz „Knowledge on Demand“ trennt Themen in Teilaufgaben, zwischen denen sich die Beteiligten immer wieder abstimmen: Weil das selbstständige Arbeiten von den Schülern erst erlernt werden muss, wird die eigenständige Forschung mit einem engen Betreuungsverhältnis ergänzt. Je nach individuellem Vermögen können dann die Aufgaben dann frei oder gesteuert angegangen werden.

Wie lässt sich der natürliche Rohstoff Holz weiter nutzen? Daniela Pachatz von der HSM stellte drei Anwendungsbeispiele aus dem Projekt FiWood vor, in dem um die Integration von Funktionen in Schichtholzprodukten geht. Ein Projekt ist ein Sitzpult, in das verschiedenen Funktionen wie eine Heizung und Sensoren (Temperatur und u.a. Luftfeuchte) eingelassen sind. Die Wärmefunktion ist auch Teil von Bodenheizelementen, die über die Abgabe von Infrarotwärme den Effekt der thermischen Behaglichkeit erreichen sollen. Nicht zuletzt lassen sich auch LED-Arrays in den Furnieren integrieren, und so leuchtende Holzelemente herstellen.

Walpola Perera von der FHE ist Teil des Forschungsprojektes Kimono-EF, das die Mobilität beeinträchtigter Menschen im Stadtraum sicherer machen will. Weil die Grünphasen von Ampelanlagen oftmals zu kurz sind, um betroffenen Menschen eine vollständige Überquerung der Straßen oder Straßenbahnschienen zu erlauben, soll hier innovative Technologie Einzug halten. Zunächst werden mit KI-optimierten Erfassungssystemen wie Kameras Personen frühzeitig ausfindig gemacht, die einen längeren Zeitraum für die Querung benötigen könnten, zum Beispiel Personen in Rollstühlen oder mit Kinderwägen. Anschließend werden die spezifischen Grünphasen verlängert und die anderen Verkehrsteilnehmer informiert. Weiter gedacht könnte mit Hilfe dieser Benachrichtigungssysteme auch eine intelligente Verkehrssteuerung autonomer Fahrzeuge ergänzt werden.

Einen Ansatz, die Photolithographie mit extremem ultraviolettem Licht zu verbessern, stellte Niranjan Kannali Ramesha von der HSM vor. Moderne Computerchips werden durch ein spezifisches Verfahren hergestellt, das sich als Buchdruck mit Licht umschreiben ließe. Auf dem Wafer, also einer Siliziumscheibe, wird eine photosensitive Schicht aufgetragen und dann durch eine Maske hindurch dem Licht ausgesetzt, wodurch sich hochkomplexe und kleine elektronische Bauteile wie Transistoren aufbringen lassen. Der bestimmende Faktor der Größe der Bauteile ist momentan die Wellenlänge des Lichts, wodurch sich der Einsatz extremen ultravioletten Lichts erklärt. Um die Produktionskapazität zu steigern, müssen kraftvollere EUV-Quellen als die bislang genutzte Variante über Zinnkügelchen gefunden werden. Das Projekt ging dem Ansatz nach, das EUV von Freien-Elektronen-Lasern wie dem FLASH als Quelle zu nutzen. Zentral ist hierbei die Frage, ob und wie sich das EUV-Licht in einem Fokuspunkt konzentrieren lässt, wofür wiederum die Erfassung der Wellenfront eine entscheidende Rolle spielt. Im Weiteren brauche es optische Systeme, die Abweichungen der Wellenfont korrigierten.

Martin Sennewald (TUI) stellte abschließend einen Aspekt des Forschungsprojektes DimFSW vor, das darauf abzielt, die Beschädigungen von Werkzeugen bei Schmelzschweißverfahren wie dem Rührreibschweißen abzuschätzen und das Aufkommen von Ausfällen von Produktionsabläufen zu minimieren. Die Fügetechnik stehe grundsätzlich vor steigenden Herausforderungen, unter anderem aufgrund wachsender Ansprüche der Bauteilkomplexität, dem Leichtbau und der Qualität. Zum Beispiel verlangt die Elektromobilität weitaus komplexe Bauteile als die bisherigen Modelle. Für die Fertigung folgen hieraus nicht nur die Wirkung hoher Prozesskräfte, sondern auch ein erhöhter Verschleiß der Werkzeuge. Wie lässt sich dieser Verschleiß so bestimmen, dass Ausfälle in laufenden Produktionsprozessen vermieden werden können? Der Ansatz ist, auf die tatsächlichen Prozesskräfte und -momente wie der vorliegenden Spannungen am Schweißstift im Prozess zurückzugreifen, wobei diese aus den Kraft-/Drehmomentdaten gewonnen werden.

Nachhaltigkeit und Netzwerke, Daten und Patente

Neben diesen konkreten Forschungsvorhaben gab der Tag der Ingenieurwissenschaften auch Projekten Raum, die Forschung und Lehre strukturell verbessern wollen. Mit ThüLeNa präsentierten die Professoren Frank Pothen (EAH) und Matthias W. Schneider (HSM) ein jüngst gestartetes Projekt, das sich dem Aspekt der Nachhaltigkeit im Lehren und Lernen widmet und dies stärken will. Dieser Nachhaltigkeitsgedanke umfasst Aspekte der Entwicklung neuer Technologien ebenso wie eine soziale und ökologische Verantwortung sowie die Einholung sozialer und ökonomischer Akzeptanz. Das Ziel von ThüLeNa ist es, die Ingenieurwissenschaften auf diese Herausforderungen auf verschiedenen Ebenen vorzubereiten und die Transformation produktiv zu begleiten, und zum Beispiel die Nachhaltigkeit in Lehrformaten zu integrieren und bereits vorhandene Strukturen und Kompetenzen zu stärken.

Wie lässt sich die Forschung und Entwicklung in Thüringen kooperativ verknüpfen? Das Thüringer Zentrum für Maschinenbau nimmt sich dieser Aufgabe an, wie Dr. Andreas Patschger in seinem Vortrag deutlich machte. Das ThZM ist eine Kooperation aus fünf Forschungseinrichtungen, u.a. der TUI und der HSM, das sich neben wirtschaftspolitischen Impulsen vor allem dem Wissens-Transfer hin zu kleinen und mittleren Unternehmen verschrieben hat. Es geht also darum, gefundene Lösungen in die Anwendung zu bringen und hierzu Institutionen der F&T mit den zentralen Akteuren, also Unternehmen, in Kontakt zu bringen. Beide Seiten können hierbei voneinander lernen. Ein weiterer Ansatz des ThZM ist zudem die Netzwerkarbeit, um die Akteure in Austausch zu bringen, zum Beispiel in Formaten wie der Cross-Cluster-Initiative Thüringen. Hierin tauschen sich kleine und mittlere Unternehmen über ihre Erfahrungen, Bedarfe und gemeinsamen Interessen aus, was zukünftigen Kooperationsprojekten ebenso den Weg ebnet wie es den Partnern einen Überblick in geteilte Problemlagen erlaubt. Nicht nur können die Beteiligten so von best-practise-Beispielen profitieren, sondern auch mögliche Kooperationspartner in der Nachbarschaft kennengelernt werden.

Eine andere Frage ist die der Forschungsdaten, wobei hier nicht nur an die Statistiken empirischer Sozialwissenschaften zu denken ist, sondern auch an die massiven Datenmengen, die zum Beispiel im Maschinenbau per Sensoren an den Werkzeugen erhoben werden. Da diese Informationen mit viel Aufwand gewonnen werden, ist es sinnvoll und von einem allgemeinen wissenschaftlichen Interesse, die erhobenen Daten zu teilen, im Kreise der Wissenschaft oder auch in der Öffentlichkeit. Um Wissenschaftler:innen bei diesen Projekten zu unterstützen wurde mit dem FDM-HAWK eine Initiative des Forschungsdatenmanagement ins Leben gerufen, deren Mitarbeiter:innen auf verschiedenen Feldern helfen können. Wie Sarah Boelter (EAH Jena) hervorhob, fängt dies bereits bei grundsätzlichen Dingen wie dem Datenschutz- und der -sicherheit an, geht über den planvollen Umgang mit Daten und ihrer Erhebung schon im Vorfeld und reicht bis in Detailfragen wie den passenden Metadaten, verlässlichen Plattformen und den kompatiblen Formaten der entsprechenden Daten.

Ein anderer Punkt sind die Patente: Jan Axel Schleicher gab einen Einblick in seine Tätigkeit und die Aufgabe von PATON, dem Landespatentzentrum Thüringen. Letztlich ist es das Ziel, unter anderem Wissenschaftler:innen dabei zu unterstützen, Patente zu beantragen und die verschiedenen Fallstricke einer solchen Anmeldung zu vermeiden. Welche Kriterien müssen erfüllt werden, um ein Patent anmelden zu können? Hier ist unter anderem an den Stand der Technik zu denken, dessen Mängel und das Potential der Erfindung, wobei hier wiederum zwischen der Aufgabe und der Lösung der Erfindung geschieden werden kann. Nicht zuletzt stellte Schleicher den Ablauf einer Patentanmeldung vor, um eventuell Betroffenen eine Orientierung zu geben.

Sven Uwe Büttner vom StarterWerk gab einen Überblick über die Dos and Don’ts von Existenzgründungen: Was braucht es eigentlich, um erfolgreich von einer Idee zu einer Unternehmung zu gelangen? In das Zentrum stellte Büttner das kreative, engagierte Individuum, das eine Idee verwirklichen will. Neben der Definition einer Baseline, der Perzeption des Marktes und der Interessen potentieller Kund:innen ging es um die Nutzung wichtiger Kontaktnetzwerke und die Fokussierung gepaart mit einer Offenheit, die den Weg zum Ziel nicht weniger gerichtet, nur etwas breiter werden lässt.

Ein Fazit

Am Ende des Tages konnten die Gäste, die Referierenden und das Organisationsteam auf einen erfolgreichen, informativen Tag der Ingenieurwissenschaften zurückblicken, der verschiedene Aspekte der Thüringer Ingenieurwissenschaften beleuchtete und der zugleich ebenso für die Öffentlichkeit wie für Wissenschaftler:innen lohnenswerte Inhalte bereithielt.

Die Veranstalter wollen zum Abschluss allen Beteiligten danken, die im Vorfeld oder am Tag selbst mit ihrem Engagement für das Gelingen beitrugen.

Drucken mit Licht – Über die Potentiale der Fotolithografie

Drucken mit Licht – Über die Potentiale der Fotolithografie

Um immer kleinere und effizientere Mikrochips produzieren zu können, müssen permanent neue Wege beschritten und Technologien erforscht werden. Gegenwärtig sind es spezielle Verfahren der Fotolithographie, in welchem Halbleiter mit Hilfe von extremem ultraviolettem Licht hergestellt werden, die entscheidende Potentiale versprechen. Auch wenn der technische Aufwand dieser Methode immens ist und eine lange Zeit der Forschung und Entwicklung bedurfte, bietet sie enorme Chancen für die Fertigung von hochkomplexen Bauteilen. An der Hochschule Schmalkalden will sich Professor Christian Rödel, vor kurzem auf die Professur für Physik und angewandte Lasertechnik berufen, diesem Gebiet in Forschung und Lehre widmen.

Um den praktischen Nutzen der Mikroelektronik und die Fortschritte der letzten Dekaden erkennen zu können, genügt ein Blick in unsere Hosentaschen: Auch wenn die Smartphones mittlerweile aus dem Alltag nicht mehr wegzudenken sind, ist es doch erstaunlich, was die kleinen Geräte gerade im Hinblick auf ihren noch jungen Ursprung vermögen. Da der technische Fortschritt ein stetiger Prozess der Innovation ist, sucht die Mikroelektronik weiter nach Mitteln und Ansätzen, Bauteile zu verkleinern bzw. komplexer gestalten zu können. Ein Weg dahin sind fotolithographische Methoden, bei denen Chips mit Hilfe von Lasern fotolithografisch hergestellt werden. Einerseits bieten sich im Rückgriff auf das extreme ultraviolette Licht spezifische Vorteile gerade für die Miniaturisierung elektronischer Bauteile, andererseits haben diese Verfahren in ihrer Anwendung hohe technische und praktische Voraussetzungen.

Die Forschung in diesem Bereich wurde in letzten Dekaden vor allem durch ein Unternehmen aus den Niederlanden vorangetrieben: Vor nunmehr dreißig Jahren begann hier die Erforschung der technischen Grundlagen und führte zur Entwicklung einer Apparatur, die heute zu den komplexesten und teuersten Systemen gehört und die ASML zu einem der wertvollsten Unternehmen der Welt gemacht hat. Der Vorsprung im Bereich von Forschung und Entwicklung, den sich ASML erarbeitet hat, beruht auf einer langfristigen Spezialisierung, die selbst noch die Zulieferfirmen umfasst. Im Moment ist nur diese Firma in der Lage, Anlagen herzustellen, die Fotolithographie mit extremem ultraviolettem Licht verwenden. Die Produktion modernster Chips ist in der Folge von diesem einen Anbieter abhängig, was letztlich sogar geopolitische Komplikationen nach sich zieht.[1]

Schreiben mit Licht

Lithographie ist ursprünglich ein Flachdruckverfahren, was meint, dass der Druck nicht über eine vertieft oder erhaben gearbeitete Zeichnung auf der Druckplatte erfolgt, sondern die druckenden und nichtdruckenden Partien auf einer Ebene liegen. Die Maske wird hierbei durch eine Versiegelung der Steinplatte aufgetragen, wobei das Prinzip auf der Unmischbarkeit von Fett und Wasser basiert. Während die druckenden Partien die fettreiche Druckfarbe aufnehmen, werden die nichtdruckenden Stellen mit einem Wasserfilm befeuchtet und stoßen die Druckfarbe ab. Im Falle der Fotolithographie wird dieses Prinzip durch Licht und lichtreaktive Substanzen umgesetzt. Kurz gefasst wird eine hauchdünne Siliziumscheibe, Wafer genannt, mit einem Licht-empfindlichen Fotolack beschichtet und anschließend mittels einer kurzzeitigen Strahlung über eine Maske belichtet, wodurch sich die Chemie des Lacks verändert und die Muster übertragen werden. Durch Wiederholung dieses Prozesses entstehen komplexe 3-dimensionale Strukturen – die Mikrochips. Auch wenn dieses Verfahren schon eine längere Zeit eine übliche Methode in der Herstellung von Microchips war, verändern sich durch die EUV-Lithographie die Rahmenbedingungen und Möglichkeitsräume.

Der Grad an Präzision, den diese Maschine verlangen, lässt sich fast nur in der Prosa von Superlativen Ausdruck verleihen. Ein Beispiel: Die Laser sind so genau, dass sie es erlauben würden, von der Erde aus eine Münze auf der Mondoberfläche zu treffen. Es geht hier darum, komplexe elektronische Bauteile im Nanometerbereich zu bauen, wobei sich verschiedene physikalische und optische Herausforderungen kombinieren. Um sich die Größenordnung auch nur annähernd vorstellen zu können: Wir sprechen hier von dem Tausendstel eines menschlichen Haars. Hier wurde nun das Licht selbst zum Problem: Um auf dieser Ebene arbeiten zu können, reicht die Qualität des Lichts der üblichen Laser aufgrund der Wellenlänge nicht aus.

In diesem Vorlesungsexperiment soll Studierenden die vergrößernde Abbildung eines Maßstabs näher gebracht werden. In der Fotolithografie wird vom Prinzip her ähnlich eine Maske auf einen Siliziumwafer mit Fotolack abgebildet.

Das Unsichtbare nutzbar machen

Warum also der Rückgriff auf das extreme ultraviolette Licht? Licht ist bekanntlich eine elektromagnetische Welle und besitzt charakteristische Wellenlängen, die wiederum die Bedingungen ihrer Anwendung vorgeben. Kürzere Wellenlängen lassen das Schreiben kleinerer Strukturen zu, pointiert formuliert. Um ein lebenspraktisches Beispiel zu bemühen: Auch wenn sie von identischer Größe sind, unterscheidet sich der Wellenlängenbereich der schreibenden und lesenden Laser von CD´s und Blu-Ray´s, wodurch vielmehr Daten auf das BD-Medium geschrieben werden können. Das ultraviolette Licht, das außerhalb der menschlichen Wahrnehmbarkeit liegt – außer indirekt im Falle des Sonnenbrandes –, hat eine sehr niedrige Wellenlänge. Extremes ultraviolettes Licht hat eine Wellenlänge von 13,5 Nanometer und liegt damit weit außerhalb des Bereichs menschlicher Perzeption. Dieses extrem ultraviolette Licht wird benötigt, um die Miniaturisierung voranzutreiben und kleinere Strukturen und Integrationsdichten in einer Größenordnung von unter 15 Nanometer realisieren zu können.

Um mit diesem Licht arbeiten zu können bedarf es allerdings einiger Vorkehrungen: Da dies Licht sehr leicht absorbiert wird, muss die gesamte Belichtung mit EUV-Strahlung im Vakuum vollzogen werden. Zudem können keine Linsen verwandt werden, wie es üblicherweise mit Lasertechnologien in Verbindung gebracht wird, vielmehr funktioniert die Bündelung des Lichts über hochpräszise Spiegel, deren Herstellungsprozess für sich schon höchst anspruchsvoll ist.

Auch wenn die Forschung an der Nutzung des extremen ultravioletten Lichts schon länger weilte, gelang erst Mitte des letzten Jahrzehnts ein entscheidender Durchbruch: Indem man flüssiges Zinn als Lichtquelle nutzen konnte, wurde die Schwelle zur Massenproduktion überschritten, durch die sich die Anschaffung einer solchen Maschine überhaupt erst lohnt. Das Zinn wird dabei als Tropfen in der Maschine mit einem Laserpuls beschossen, wodurch die Kugel die Form eines Eierkuchens annimmt. Im Anschluss wird das Zinn von einem stärkeren Laserpuls nochmals beschossen, wodurch dann das EUV-Licht entsteht und über verschiedene Spiegel zur Maske und dann zum Wafer geführt wird. Erst durch dieses Verfahren wurde die Produktion von Computerchips in Masse möglich und die EUV-Lithographie rentabel. Im Angesicht der Preise der Apparaturen zwischen 185 und 360 Millionen Euro muss sich die Anschaffung lohnen. Daher bedarf es eines hohen Outputs und einer verlässlichen Produktion, was wiederum die beständige Weiterentwicklung nahezu aller Komponenten der Maschine umfasst.

Partnerschaften, Forschung und Lehre

In Anbetracht der Komplexität dieser Technologie lässt sich erahnen, wie viele Wissenschaftlter:innen an ihrer Erforschung beteiligt waren und nunmehr damit beschäftigt sind, sie weiter zu verbessern. Zugleich macht die Komplexität eine Konzentration notwendig. An der Hochschule Schmalkalden möchte sich Prof. Christian Rödel mit der spektralen Charakterisierung von EUV-Quellen und Komponenten beschäftigen, die in der EUV-Lithografie eingesetzt werden können. Das sind zum einen dünne Filterfolien, aber auch EUV-Spiegel, die aus vielen Nanometer-dünnen Schichten bestehen.

Um Komponenten testen und optimieren zu können, die in der EUV-Lithographie und der Inspektion eingesetzt werden, wurde an der an der Hochschule Schmalkalden, gefördert durch Mittel der Carl-Zeiss-Stiftung, das Projekt EUV-4-LITHO ins Leben gerufen. Mit Unterstützung von Kooperationspartnern aus der Region bis ins europäische Ausland wird Professor Rödel und sein Team ein hochauflösendes EUV-Spektrometer entwickeln, mit dem sich die Vielschichtsysteme der Spiegel und ihre Eigenschaften der Reflektivität mit bisher unerreichter Präzision vermessen lassen.

Das Reflexionsgitter aus dem Vorlesungsexperiment spaltet das weiße Umgebungslicht in die spektralen Bestandteile auf. Im Projekt EUV-4-LITHO soll ebenso ein Reflexionsgitter eingesetzt werden, um die EUV-Strahlung spektral zu charakterisieren.

Auch wenn die EUV-Lithografie eine innovative Technologie der Gegenwart ist, lassen sich hier Forschung und Lehre verbinden. So entstand zum Beispiel im Projekt EUV-4-LITHO bereits eine Masterarbeit und es wurde eine Exkursion zum DESY, dem Deutschen Elektronen-Synchrotron, unternommen, um hier Untersuchungen mit EUV-Strahlung von Freien-Elektronen-Lasern vorzunehmen. Neben der Lehre steht für Professor Rödel die Kooperation im Fokus seiner Arbeit an der Hochschule für angewandte Wissenschaften. Neben den mannigfaltigen Projektpartnerschaften geht es ihm auch im die konkrete Vernetzung vor Ort, zum Beispiel der Verknüpfung von Forschungsthemen des Maschinenbaus und der Elektrotechnik. Dabei liegt im auch die Präzisionsmesstechnik am Herzen, die im Maschinenbau eingesetzt wird.


[1] Wer sich über diesen Aspekt informieren möchte: Chris Miller, Chip War. The Fight for the World’s Most Critical Technology, New York 2022.

* Das Beitragsbild zeigt ein Vorlesungs- und Praktikumsexperiment, in dem die charakteristischen Linien einer Natriumdampflampe bei 589 nm mit einem Reflexionsgitter spektral untersucht werden. Eine Xenon-basierte EUV-Lichtquelle soll an der Hochschule Schmalkalden entwickelt werden, die in ähnlicher Weise bezüglich des Spektrums bei 13,5 nm untersucht werden soll.

Künstliche Intelligenz – Potentiale und Hürden in der Anwendung

Künstliche Intelligenz – Potentiale und Hürden in der Anwendung

Der Begriff „Künstliche Intelligenz (KI)“ kann, je nach sozialer Prägung, bei jedem Leser oder Leserin eine andere Assoziation auslösen. Je nach Alter, Interessen oder auch technischer Begeisterung kann sich der ein oder andere an unterschiedliche Computerspiele, Filme oder auch Bücher mit verschiedenen Arten an KI aus seiner Kindheit erinnern. Somit tragen Science Fiction oder allgemeiner die Kulturindustrie jeder Dekade ganz eigene Bilder artifizieller Intelligenz: Ob wir an das sprechende Auto „KITT“ aus der Knight Rider, selbst steuernde Raumschiffe oder humanoide Roboter, wie „Data“, aus der Serie Star Trek oder an künstlichen Neuronalen Netzen (KNN), Deep Learning (DL) oder ChatGPT als Large Language Model (LLM) denken, kann man nur schwer, durch aufwendige Umfragen oder persönliche Gespräche herausfinden. In vielen Narrativen unserer Gegenwart kommt noch die Tendenz einer globalen Dominanz hinzu, die Seitens autonom agierender Roboter, Programme oder Netzwerke ergriffen oder zumindest angestrebt wird. Dies mag einen Grund in der steigenden Verbreitung smarter Geräte und der umfassenden Digitalisierung sowie der Abhängigkeit unserer Alltagsroutinen von diesen Technologien haben. All diesen Bildern der Künstlichen Intelligenz ist dabei gemein, dass sie zu der realen Version nur überschaubar viele Parallelen aufweisen.

In der banalen Wirklichkeit verliert die KI zwar viel von den popkulturellen Etiketten zwischen Idealisierung und Dämonisierung, sie gewinnt aber zugleich an praktischen Nutzen. Um zu verstehen, was Künstliche Intelligenz ist, worin ihre Potentiale und Schwächen im Allgemeinen wie im Besonderen liegen und was letztlich ihr Nutzen ist, muss also zunächst von den Zerrbildern Abstand genommen werden, auch wenn sie sich durchaus als Einstieg in Ausführungen wie diese eignen.

Künstliche Intelligenz (KI)

Künstliche Intelligenz lässt sich am ehesten als ein Werkzeug beschreiben, das bei der Verarbeitung von Daten den Menschen Hilfestellung leisten soll. Der Bereich der KI ist eine Untergruppe aus dem Forschungsgebiet des Maschinellen Lernens (ML). Beide Begrifflichkeiten lassen sich meist nicht scharf von einander trennen und gehen fließend in einander über. Für beide Themenkomplexe kann jedoch gesagt werden, dass in der Vergangenheit die Herausforderungen in den Fragestellungen „Wie komme ich an Daten?“, „Welche Sensoren kann ich einsetzen?“ oder „Wie kann ich diese Daten auswerten?“ zutreffend waren. Die aktuellen Fragestellungen gehen eher in die Richtung: Wie kann ich diese Mengen an Daten komprimieren, auswerten oder die Entscheidung nachvollziehen? Hier kommen dann Begrifflichkeiten wie z.B. Big Data, Dimensionsreduktions-Algorithmen oder erklärbare KI (englisch explainable artificial intelligence (XAI)) zum Einsatz.

Das Forschungsgebiet der großen Datenmengen (Big Data) ist ursächlich aus der großen Verbreitung an Sensorik oder Informationsquellen entstanden. Heutzutage besitzen fast alle Menschen auf der Welt eine Smart Phone oder PC. Infolge der Möglichkeit, kostengünstige Mikroelektronik oder Sensorik herzustellen, gibt es eine Unmenge an potentiellen Datenquellen, welche die Menschen bei einer Auswertung oder Bewertung überfordern können. Hierfür müssen effiziente und schnelle Algorithmen entwickelt werden, welche es dem Menschen in annehmbarer Zeit ermöglichen, komplexe Zusammenhänge in den Daten zu erkennen und auch verstehen zu können. Die somit entstehenden komplexen Programme sind durch die hohe Rechenleistung in der Lage, Daten maschinell zu erfassen, Muster und Strukturen sowie unter anderem Synchronitäten, Parallelen und Divergenzen von Prozessen zu erkennen und zu verknüpfen. So lassen sich mehr und mehr Informationen aus den großen Beständen an Daten ziehen und für nachlaufende Erklärungen, tiefere Verständnisse des Gegebenen und vorlaufende Abschätzungen der möglichen Zukunft nutzen. Gerade weil die Vermessung unserer Welt durch Sensoren in Geräten z.B. Smartphones oder auch modernen Automobilen immer weiter voranschreitet, wächst ein Fundus an Wissen, der produktiv genutzt werden kann.

Zugleich ist es angebracht, nicht von der einen Künstlichen Intelligenz zu sprechen, sondern dies eher als Sammelbegriff verschiedener, teils recht unterschiedlicher Formen von KI zu verstehen. Künstliche Intelligenz umfasst diverse Verfahren der Datenverarbeitung, die sich für unterschiedliche Kontexte, Fragenstellungen und Materialien eignen. Es verhält sich also so wie bei vielen anderen angewandten Wissenschaften: Es gibt nicht ein generelles Verfahren, sondern verschiedene Ansätze mit unterschiedlichen Charakteristika. Zum Beispiel können KI-Modelle, die sich für Bildererkennung eignen, nicht für Sprachprogramme wie Chat GPT verwendet werden.

Damit ist auch schon eine Schwäche in der Nutzung von KI angesprochen: Nicht alle Modelle eignen sich für jede Anwendung. In anderen Worten muss für die Aufgabe, gerade wenn sie einem speziellen Zweck dient, zunächst das passende Verfahren gefunden und mit passenden Daten angelernt, getestet oder nachtrainiert werden. Die Nutzung der KI-Modelle ist demzufolge keine one-fits-all-Lösung, sondern bedingt einen Anpassungsprozess. Für manche Aufgaben eigen sich z.B. Unscharfe Regelwerke (Fuzzy Modelle), Support Vektor Maschinen (SVM) oder künstliche neuronale Netze, welche sich an der Funktionsweise des Informationsaustausches zwischen menschlichen Nervenzellen anlehnen.

Bilder und Werkzeuge

Die Komplexität dieser Anpassung könnte an Komplikationen bei der Bilderkennung klarer werden, wobei hier noch ein epistemologisches Problem auftritt. Digitale Bilderkennungsverfahren arbeiten mit zweidimensionalen Objekten, denen also die räumliche Tiefe fehlt. Diese muss gewissermaßen als Vorder- und Hintergrund wieder in das Bild hineingelesen werden: Die Dreidimensionalität, die distinkten Objekte und selbst der Fokus müssen demnach erst erarbeitet werden. Was die Programme vor Herausforderungen stellt, ist dem Menschen schon in seinem Zugang zur Welt quasi natürlich gegeben. Gerade weil die eigentliche Objekterkennung und -unterscheidung fundamentale Aufgaben sind, können hier spannende Probleme entstehen: Ein gerne gebrachtes Beispiel ist die aus der Literatur bekannte Methode der One-Pixel-Attack[1]. Hier kann die maschinelle Bewertung durch ein Bilderkennungsalgorithmus, durch die Änderung eines einzigen Pixels in einem Pferdebild zu einer Fehlklassifikation zu ein Frosch führen. Die Funktionsweise der KI-Modelle ist also noch nicht perfekt, auch wenn sich ihre Güte – man denke nur an die Gesichtserkennung von Smartphone-Kameras – in den letzten Jahren kontinuierlich verbessert hat.

Was meint es nun, von der Künstlichen Intelligenz als Werkzeug in der Industrie zu sprechen? Stellen wir uns einen Produktionsprozess von Plastikteilen vor: Wir haben auf der einen Seite die vielen kleinen Plastikkügelchen am Anfang, die aufgeschmolzen und in eine bestimmte Form gebracht werden, um zum Ende als gefertigtes Teil aus der Maschine entnommen zu werden. Was zunächst wie ein idealer, unendlich wiederholbarer Vorgang erscheint, hängt im Alltag der Produktion von vielen Faktoren ab. Die Erfahrung von Mitarbeitern und Mitarbeiterinnen mit den Maschinen und Materialien ist hier für den Produktionsprozess zentral, und wird es absehbar bleiben. Eine hilfreiche Komponente kann aber zugleich eine Sensorik sein, die unter anderem Parameter wie Temperatur und Druck permanent misst und eine erste Auskunft über die erwartbare Güte der produzierten Teile zum Beispiel durch eine Ampel gibt, bzw. vor wahrscheinlichen Fehlern warnt und Anpassungsvorschläge liefert.  Für solche in den Produktionsprozess integrierten Beurteilungen ist nicht eine Messung entscheidend, sondern ein Zusammenspiel verschiedener Werte und Schwellen sowie unterschiedlicher, teils zusammenhängender Verläufe, wodurch sich dynamische Verarbeitungssysteme wie KI-Modelle anbieten. Moderne Sensoren sind nicht nur hochempfindlich, sie können auch an Punkten angebracht werden, die dem Menschen während der Produktion nicht zugänglich sind. Der Mensch wird hier also nicht ersetzt, sondern durch die Technik unterstützt. In verschiedenen Forschungsprojekten wie z.B.: „Powermoulds“, „Wasabi“ oder auch „SMoSys“ arbeiten Manuel Schneider und Norbert Greifzu aus dem Team der „Eingebetteten Diagnosesysteme (EDS)“ von Professor Andreas Wenzel an solchen Lösungen für eine smarte Industrie und dem Einsatz vom KI an anwendungsnahen Problemstellungen. Die Forschungsgruppe EDS ist Teil einer Hauptforschungsrichtung „Adaptiven Signalanalyse“ der Hochschule Schmalkalden. Interessante Veröffentlichungen der Forschungsgruppe sind:

Literaturverzeichnis

[1]N. Greifzu, M. Schneider, M. Werner, N. Fränzel, A. Wenzel und C. Walther, Bewertung von Produktionsprozessen mit Verfahren der Künstlichen Intelligenz, 2020.
[2]M. Schneider, N. Greifzu, L. Wang, A. Wenzel, L. Pu und C. Walther, „An end-to-end machine learning approach for time series with varying lengths,“ Neural Computing and Applications, Nr. 10.1007/s00521-024-09473-9, 2024.
[3]H. Siebald, F. Pforte, B. Kulig, M. Schneider, A. Wenzel, M. Schweigel, J. Lorenz, H.-H. Kaufmann, J. Huster, F. Beneke und O. Hensel, „Referencing acoustic monitoring of cutting knives sharpness in agricultural harvesting processes using image analysis,“ Biosystems Engineering, Bd. 226, Nr. 10.1016/j.biosystemseng.2022.12.007, p. 86–98, February 2023.
[4]D. Schneider, M. Schneider, M. Schweigel und A. Wenzel, „Application of various balancing methods to DCNN regarding acoustic data,“ Proceedings 30. Workshop Comupational Intelligence, Nr. ISBN: 978-3-7315-1051-2, November 2020.
[5]M. Schneider, N. Greifzu, C. Walther und A. Wenzel, „Übertragung von anwendungsnahen Problemstellungen des Maschinellen Lernens aus der Forschung in die Lehre,“ Berlin Journal of Data Science, Bd. 1, February 2020.

[1] https://arxiv.org/pdf/1710.08864.pdf

Über den Abschluss des Forschungsprojektes „RoboTraces“

Über den Abschluss des Forschungsprojektes „RoboTraces“

Das Projekt RoboTraces zog Ende Januar ein Resümee seiner einjährigen Forschungstätigkeit und lud aus diesem Anlass abseits der Vertreter:innen von Presse und Politik auch jene Personen ein, die ein elementarer Bestandteil des Vorhabens in dem Stadtquartier Geras waren: Die Bewohner:innen. Neben dem Umweltminister Thüringens, Bernhard Stengele, fanden auch der TAG-Regionalchef, Claudius Oleszak, und die Referentin beim Bundesministerium für Digitales und Verkehr, Sarah Schmelzer, positive Worte zum Projekt und seiner Bilanz.

„Robbie“ ist ein autonomer Lieferroboter, der Einkäufe vom Laden, hier ein lokaler REWE, zu den Kund:innen, hier zum Nachbarschaftstreff Eichenhof, bringen soll. Da der Roboter die Gehwege nutzt, galt es zunächst, die Reaktionen der Bevölkerung auf „Robbie“ zu sondieren, also zum Beispiel, ob die Passant:innen anhalten, die Straßenseite wechseln oder einfach weitergehen – bzw. in welchen Situationen welche Reaktion auftritt.

Anpassung und Lebensqualität

Aus diesen Beobachtungen und Gesprächen mit den Nutzer:innen und Anwohner:innen lässt sich unter anderem schließen, welche Abstände, welche Farbgebung und welche Geschwindigkeiten notwendig sind, damit der Roboter zwar wahrgenommen wird, er zugleich aber nicht stört oder gar als Gefahr erscheint. Um diese Einsichten über das Verhalten und mögliche Parameter der Anpassung zu gewinnen sowie erste Einschätzungen möglicher Stressoren, also Auslösern von Stress, treffen zu können, wurde Robbie über einen längeren Zeitraum in mehreren Phasen in dem Quartier in Gera getestet.

„Robbie“ soll in erster Linie Menschen helfen und von alltäglichen Mühen entlasten, wie es unter anderem Einkäufe darstellen. Somit ist es ein Gewinn an Lebensqualität und Autonomie, wenn ältere Menschen wieder die Möglichkeit erhalten, weitestgehend selbstbestimmt und unabhängig ihre alltäglichen Besorgungen zu erledigen. Im Ergebnis bleibt den Senior:innen mehr Zeit für andere Aktivitäten, zum Beispiel zum Tanz oder Kartenspiel im Nachbarschaftstreff Eichenhof. Die Entwicklung autonomer Lieferroboter steht zwar noch am Anfang, ihr positiver Nutzen gerade für eine immer älter werdende Bevölkerung hingegen ist schon bereits heute greifbar.

Pionierarbeit und Erkenntnisse

Professor Sebastian Zug von der Technischen Universität Bergakademie Freiberg, Professor Frank Schrödel von der Hochschule Schmalkalden und Professor Felix Wilhelm Siebert von der Technischen Universität Dänemark leisteten mit ihren Teams hier Pionierarbeit, sind die Akzeptanzbedingungen autonomer Lieferroboter im Outdoor-Bereich doch bislang unerforscht. Gerade die Situation eines inhomogenen Terrains, das unterschiedliche Beläge und zum Beispiel Breiten und Belagsqualitäten der Gehwege aufweist, wurde zu einer Herausforderung für den Lieferroboter. Zugleich ließ es die lange Testphase zu, Daten in verschiedenen Situationen zu sammeln, also bei Tag und Nacht sowie unter anderem bei hohem und niedrigem Passant:innenaufkommen.

Ein Ergebnis der Testphasen war, dass die Einschätzbarkeit des Verhaltens des Roboters ein wichtiger Aspekt im Umgang der Menschen mit ihm war: Kurzum wollen Menschen nicht überrascht werden, wie von spontanen Richtungs- oder Geschwindigkeitsänderungen. Die nächste Herausforderung wird es also sein, die Vorhersagbarkeit des Verhaltens technisch zu integrieren und sichtbar zu machen. Die einjährige Projektphase wurde also nicht nur genutzt, um die Technik der Roboter stetig zu verbessern, sondern auch dazu, den Kontakt von „Robbie“ und Menschen besser zu verstehen und für sich anschließende Projekte konstruktive Ansatzpunkte zu schaffen.

Datenschätze und Herausforderungen

Während der Testfahrten wurde ein großer Datensatz en erzeugt, der nun – natürlich anonymisiert – anderen Forschenden und Forschungsfragen als Grundlage zur Verfügung steht. Die Organisation der Testfahrten, die das Sammeln der Daten ermöglicht, ist eine arbeitsintensive Aufgabenstellung: Nicht nur musste Robbie jeweils nach Gera verbracht werden, auch mussten Teams zusammengestellt und Absprachen mit den Verantwortlichen vor Ort getätigt werden. Dieser Aufwand kann durch die Vorarbeit des RoboTraces-Teams nun anderen Forschenden abgenommen werden. Zum Beispiel arbeitet schon jetzt eine deutsche Hochschule in Jordanien mit den Datensätzen aus den Fahrten in Gera.

Neben den technischen und verkehrspsychologischen Aspekten ist die rechtliche Ausgestaltung eine weitere Herausforderung für zukünftige Projekte der Logistik über autonome Lieferroboter. Zwar sind viele Bereiche innovativer Technologien wie das autonome Fahren schon z.T. kodifiziert, für andere Bereiche hingegen liegen noch keine Vorgaben vor. Da sich Roboter auf Fußwegen und somit Kontaktbereichen mit Passant:innen bewegen, ist die Relevanz der rechtlichen Klärung offensichtlich. Damit diese Form der Logistik im Alltag Anwendung finden kann, bedarf es eines rechtlichen Rahmens, der Verantwortlichkeiten und Mindeststandards mikromobiler, autonomer Fahrzeuge klärt.

Nicht zuletzt ist es eine Herausforderung für solche Reallabore wie die Testphase von RoboTraces, die Bereitschaft der Bevölkerung sicherzustellen. Um innovative Technologien und die Kriterien der Akzeptanz unter solchen Realbedingungen testen zu können, benötigen solche Projekte eine grundlegende Bereitwilligkeit und Aufgeschlossenheit der Anwohner:innen. „Robbi“ konnte hier auf den Erfahrungen mit „Emma“ aufbauen, eines automatisierten E-Kleinbusses, der ebenfalls in Gera-Lusan unterwegs war. Auch wenn somit die Berührungsängste schon verringert wurden, war es doch an den Forschenden, die Anwohner:innen über das Projekt zu informieren und einzubinden. Eine Möglichkeit war es, den Namen gemeinsam mit den Bewohner:inneren zu finden. Kurzum fand „Robbie“ in Gera eine bereitwillige Aufnahme, wodurch es möglich wurde, den Lieferroboter auf vielen Fahrten zu beobachten, und aus positiven wie negativen Erfahrungen der Menschen vor Ort zu lernen.

Das Projekt RoboTraces wurde von der Innovationsinitiative mFUND gefördert, mit der das BMDV seit 2016 Forschungs- und Entwicklungsprojekte rund um digitale datenbasierte Anwendungen für die Mobilität der Zukunft unterstützt.


Mehr hier:

https://www.mdr.de/nachrichten/thueringen/ost-thueringen/gera/roboter-einkaufen-senioren-testergebnis-robbie-100.html


Die Verbindung von Technologie, Ökonomie und Ökologie – Die 15. Schmalkalder Werkzeugtagung

Die Verbindung von Technologie, Ökonomie und Ökologie – Die 15. Schmalkalder Werkzeugtagung

Wie viele andere Bereiche auch ist der Werkzeugbau eine eigene Welt. Zuerst muss natürlich geklärt werden, um was es überhaupt geht: Der Werkzeugbau ist ein Teilbereich des Maschinenbaus, der sich mit der Herstellung von Werkzeugen, zum Beispiel Fräswerkzeugen für die industrielle Produktion, befasst. Dieser Arbeitsbereich erstreckt von verschiedenen Verfahren über unterschiedliche Schneidstoffe, also Materialien der Werkzeuge, bis hin zu Fragen unterschiedlicher Beschichtungen. Einen Eindruck in diesen für sich facettenreichen Bereich konnte man vor Kurzem im Rahmen der „15. Schmalkalder Werkzeugtagung“ am 8. und 9. November 2023 erhalten, die als Kooperation der GFE – Gesellschaft für Fertigungstechnik und Entwicklung Schmalkalden e.V., des Fachverbands Präzisionswerkzeuge im VDMA und der Hochschule Schmalkalden an eben dieser Hochschule stattfand und zu einer der größten Veranstaltungen dieses Bereichs zählt.

Prof. em. Dr. Konrad Wegener | ETH Zürich

Im Fokus stehen also hochpräzise und zugleich robuste Werkzeuge der industriellen Zerspanungstechnik. Unter das Zerspanen fallen verschiedene Verfahren wie das Drehen, Fräsen und Schleifen, die Werkstücke in eine bestimmte Form bringen. Als beispielhafte Vereinfachung für das Verständnis des Fräsens bietet sich das Bild von Bohrwerkzeugen an, wie wir sie alle aus unseren Bohrmaschinen kennen. Auch wenn wir dabei die Erfahrung unterschiedlicher Qualitäten dieser Werkzeuge sammeln können und sich die Schärfe und der Verschleiß verschiedener Typen nicht unwesentlich unterscheidet, ist der Grad an Belastung in der Produktion der seriellen Industrie um einiges höher.

In Bereichen der Automobil- oder auch Flugzeugproduktion geht es um enorme Stückzahlen und hocheffiziente, optimierte Fertigungsprozesse, in denen der Ausfall oder der Austausch von Werkzeugen hohen Aufwand und hohe Kosten verursachen. Die hier verwandten Werkzeuge müssen also präzise wie verlässlich arbeiten und zugleich robust sein. Hier kann nun die Forschung ansetzen und die Industrie unterstützen: In der Erforschung neuer Methoden und Materialien kann die Funktionsweise optimiert und der Verschleiß minimiert werden, wodurch nicht nur die Produkte besser, sondern auch die Fertigungsprozesse effizienter werden.

Verschiedene Wege, ein Ziel

Moderne Produktionsverfahren sind hochkomplex, was Ansätze der Forschung zugleich kompliziert und diversifiziert: Kurz gesagt kann es den Forschenden nunmehr nur um kleine Bereiche gehen, auf die sie sich spezialisieren. Tagungen haben die Aufgabe, neben einer Leistungsschau der Fähigkeiten und der Vorstellung innovativer Projekte und Ansätze die verschiedenen Bereiche in Kontakt und Austausch über die aktuellen Themen und Herausforderungen ihrer Gebiete zu bringen.

Die Werkzeugtagung wurde nach den Grußworten von einem Vortrag über die Vorzüge des Einsatzes von Lasertechnik anstatt von Zerspanwerkzeugen zur Herstellung von Umformwerkzeugen. Diese Technik ist im Bereich des Werkzeugbaus noch wenig verbreitet, so dass es nun zunächst darum geht, die möglichen Potentiale und Konditionen der Verwendung zu klären. Wie alle Fertigungsverfahren hat auch dieses einen speziellen Einsatzbereich, in dem es sinnvoll ist, auf diese Technik zurückzugreifen. Gerade wenn es um die Herstellung enorm kleiner, filigraner Formelemente geht, bei denen selbst spezielle Mikrofräsmaschinen kaum mehr arbeiten kann, bietet sich der Laser als Alternative zur Zerspanung an. Diese Richtung, der Sinnhaftigkeit und Nutzbarkeit verschiedener Ansätze für unterschiedliche Zwecke prägte die Tagung.

In diesem Sinne wurde auch der Dissens zwischen additiven und subtraktiven Verfahren als letztlich wenig produktiv bei Seite geschoben: Es kann nicht darum gehen, jenes eine, universell anwendbare Herangehen zu finden, den klassischen Stein der Weisen, sondern die Vorzüge und Nachteile unterschiedlicher Methoden für verschiedene Zwecke zu verstehen. Gerade bei hochkomplexen Werkzeugen, die in eher überschaubaren Mengen produziert werden, ist der Rückgriff auf Verfahren wie den 3D-Druck sinnvoll. Dagegen lassen sich hohe Stückzahlen zu geringen Kosten durchaus mit den etablierten Zerspanverfahren realisieren. Letztlich nimmt also kein Teilbereich einem anderen etwas weg, vielmehr ergänzen sie sich in den verschiedenen Herausforderungen der Anwendungsfelder.

Impulse

Auch wenn die Welt des Werkzeugbaus eine eigene ist, so steht sie doch in Kontakt mit der Außenwelt und ihren Entwicklungen. Im Fokus der Tagung standen auch die Möglichkeiten und Grenzen der Nutzung von Künstlicher Intelligenz: Aus Sicht der Praxis ist es weder möglich, auf die Verbesserungen digitaler Lösungen in toto zu verzichten, noch in einen naiven Lobgesang einzufallen, der in der Künstlichen Intelligenz ein Allheilmittel sieht. Die Digitalisierung und die Künstliche Intelligenz bieten im Werkzeugbau und der Optimierung der Produktion nützliche Verbesserungen, die es den verantwortlichen Personen einfacher machen. Genau hier gilt es Mittel und Wege zu finden, die neuen Techniken adäquat zu nutzen und sie in die lernenden Prozesse der Produktion einzubinden.

Eine weitere durchschlagende Veränderung ist der Anspruch der Nachhaltigkeit, der sich in unserer Gegenwart auch dem Maschinenbau als Herausforderung stellt. Diese Aufgabe ist für die Ingenieure aber keinesfalls das sprichwörtliche Neuland, ging es doch schon immer darum, mit Ressourcen wie Rohstoffen und Energie schonend umzugehen und den Verbrauch und damit die Kosten zu minimieren. In die Zukunft gedacht sind es Maschinen- und Werkzeugbauer, die technische Lösungen finden müssen, wie wir unsere Standards der Produktion halten und zugleich die Gebote der Nachhaltigkeit konsequenter umsetzen können. Wieder ist es kein Gegen-, sondern ein Miteinander, was sinnvoll und erstrebenswert ist.

Zusammen // Arbeiten

Der Austausch verschiedener Perspektiven wurde im Rahmen der Tagung in den Vordergrund gerückt. Wie wir schon verdeutlichten, gibt es zu verschiedenen Ansprüchen des Werkzeugbaus ganz unterschiedliche Lösungsansätze, ebenso in Hinsicht von den Werkstoffen wie den Verfahren der Fertigung und vieles mehr. Auch die Anforderungen der forschenden Ingenieur:innen und die Perspektiven der produzierenden Gewerbe sind nicht unbedingt deckungsgleich,  sie können sich aber über ihre jeweiligen Herausforderungen und Konditionen austauschen. Die verschiedenen Affiliationen der über 150 Referenten und Tagungsteilnehmer wurden während den Veranstaltungen also zur jeweiligen Erweiterung der Perspektive produktiv genutzt.

Auch die Organisation der Tagung nahm sich als eine Kooperation verschiedener Institutionen aus. Professor Andreas Wirtz versieht dabei als Inhaber einer Tandemprofessur schon selbst eine Scharnierposition zwischen der GFE und der Hochschule Schmalkalden, ist er doch bei beiden Institutionen zur gleichen Hälfte beschäftigt. An der Hochschule hat er die Professur für Fertigungstechnik und virtuelle Prozessgestaltung inne. Neben ihm waren auch Sandy Korb von der Hochschule Schmalkalden und Sabrina König sowie Petra Preiß von der GFE Teil des Organisationsteams, das zudem durch viele helfende Hände tatkräftig unterstützt wurde.

Die Kontakte zwischen der Hochschule und der GFE bestehen also wechselseitig. So übernimmt Dr. Florian Welzel, Geschäftsführer der GFE, regelmäßig einen Lehrauftrag an der Fakultät Maschinenbau im Sommersemester, wodurch sich die räumliche Nähe der beiden Institutionen in einen kooperativen Austausch übersetzt.

Eine Tagung lebt aber nicht nur von den Inhalten und dem wissenschaftlichen Austausch, sondern auch von dem rahmenden Programm und dem Kennenlernen der Umgebung: So wurde der erste Tagungsabend von einem Besuch der Viba-Nougatwelt und einem festlichen Essen am selben Ort abgerundet. Der zweite Tag fand seinen Ausklang in einem Besuch der GFE, wobei neben einer kulinarischen Empfehlung aus der Region eine Auswahl von Ergebnissen aus dem Bereich der Forschung und Entwicklung bei einer Besichtigung vorgestellt wurden.

Die Schmalkalder Werkzeugtagung bietet neben zahlreichen Fachvorträgen viele Möglichkeiten für einen offenen Austausch zwischen Industrie, Forschung und Hochschule. Dies eröffnet allen Teilnehmenden Potenziale sowohl für eine zielgerechte, anwendungsnahe Gestaltung gemeinsamer Forschungsprojekte als auch Chancen zum Forschungstransfer.

Neue Aufgaben, neue Wege – Der VDWF-Treffpunkt Werkzeugbau an der HSM in der Angewandten Kunststofftechnik

Neue Aufgaben, neue Wege – Der VDWF-Treffpunkt Werkzeugbau an der HSM in der Angewandten Kunststofftechnik

Anfang letzter Woche wurde die Hochschule Schmalkalden zum Gastgeber des „VDWF-Treffpunkt Werkzeugbau“, der über 90 Gäste aus Wissenschaft, Wirtschaft und Politik trotz winterlicher Witterungsbedingungen nach Südthüringen lockte. Der Verband Deutscher Werkzeug- und Formenbauer e. V., dem mehr als 490 Mitgliederunternehmen aus ganz Deutschland angeschlossen sind, ist seit vielen Jahren Kooperationspartner der Hochschule Schmalkalden im Bereich Weiterbildung und Forschung. Neben einem wissenschaftlichen Rahmenprogramm rund um die aktuellen Entwicklungen im Werkzeugbau bot das Treffen breiten Raum für den Austausch der Anwesenden und wurde von einem Besuch der Angewandten Kunststofftechnik abgerundet.

Nach der Begrüßung durch Ralf Dürrwächter, VDWF-Geschäftsführer, und Prof. Thomas Seul, in Personalunion VDWF-Präsident und Inhaber der Professur für Fertigungstechnik und Werkzeugkonstruktion an der Hochschule Schmalkalden, ließ es sich Gerald Ullrich, Mitglied des Deutschen Bundestages, nicht nehmen, alle Teilnehmer:innen willkommen zu heißen, um mit kurzen aber verständlichen Worten aus seiner Sicht als „Spritzgießer“ und Politiker Sichtweisen und Erklärungen rund um die Branche zu vermitteln. Nach weiteren einführenden Hinweisen von Claudia Michel, welche die Geschäftsstelle des VDWF in Schmalkalden verantwortet, richtete sich der Fokus des ersten Vortrags auf die Lage der Konjunktur.

Die Branche des Werkzeug-, Modell- und Formenbaus befindet sich nach Jens Lüdtke im Wandel, wobei er negativen Momentaufnahmen langfristige positive Trends entgegenstellte. Dies sollte die Anwesenden aber nicht überraschen, befinde sich der Bereich doch beständig in Veränderung aufgrund neuer Aufgaben und Rahmenbedingungen. Veranschaulicht würde der Wandel der letzten Dekaden in dem Bild von Werkshallen, die sich von klassischen Orten der Produktion hin zu hochtechnischen, klinisch-reinen Betriebsstätten entwickeltet hätten. Die aktuelle Problemstellung ist demnach nicht die Veränderung der Situation oder der äußeren Konditionen, sondern die eigene Qualität des Anpassungsdrucks, der die Branche gerade in Hinsicht der Wirtschaftlichkeit und Kosteneffizienz vor Herausforderungen stellt. Trotz der Problematik gebe es aber verschiedene Ansätze, wie der Maschinenbau reagieren könne, neben der weiteren Effizienz sei hier auf die Menschen und die wachsende Kooperation verwiesen. Auch wenn das Bild also nicht ungetrübt sei, gebe es Antworten und mögliche Wege.

Ein anderer Vortrag widmete sich mit der Dokumentationspflicht einem eher unbeliebten Zeitvertreib der Maschinenbauer:innen. Eine gut gemachte Dokumentationspraxis erschwere aber nicht die Arbeit, sondern mache sie leichter, so das Plädoyer Dr. Mario Schuberts am Ende des Vortags. Auf die kürzeste Formel gebracht, meine Doku: „Schreibe auf, was du machst / Mache, was du aufgeschrieben hast!“ Das Ziel ist letztlich, sich selbst eine sinnvolle Selbstorganisation zu erarbeiten, einen verlässlichen Schatz an Erfahrung über die Zeit zu bewahren und zugleich anderen Mitarbeitenden zugänglich zu machen. Wenn eine Doku aktuell, klar, passend und unter anderem abgestimmt sei, könne sie helfen, das Wissen um positive und negative Faktoren der Produktion zu verallgemeinern.

Die Branche des Werkzeug-, Modell- und Formenbaus befindet sich nach Jens Lüdtke im Wandel, wobei er negativen Momentaufnahmen langfristige positive Trends entgegenstellte. Dies sollte die Anwesenden aber nicht überraschen, befinde sich der Bereich doch beständig in Veränderung aufgrund neuer Aufgaben und Rahmenbedingungen. Veranschaulicht würde der Wandel der letzten Dekaden in dem Bild von Werkshallen, die sich von klassischen Orten der Produktion hin zu hochtechnischen, klinisch-reinen Betriebsstätten entwickeltet hätten. Die aktuelle Problemstellung ist demnach nicht die Veränderung der Situation oder der äußeren Konditionen, sondern die eigene Qualität des Anpassungsdrucks, der die Branche gerade in Hinsicht der Wirtschaftlichkeit und Kosteneffizienz vor Herausforderungen stellt. Trotz der Problematik gebe es aber verschiedene Ansätze, wie der Maschinenbau reagieren könne, neben der weiteren Effizienz sei hier auf die Menschen und die wachsende Kooperation verwiesen. Auch wenn das Bild also nicht ungetrübt sei, gebe es Antworten und mögliche Wege.

Ein anderer Vortrag widmete sich mit der Dokumentationspflicht einem eher unbeliebten Zeitvertreib der Maschinenbauer:innen. Eine gut gemachte Dokumentationspraxis erschwere aber nicht die Arbeit, sondern mache sie leichter, so das Plädoyer Dr. Mario Schuberts am Ende des Vortags. Auf die kürzeste Formel gebracht, meine Doku: „Schreibe auf, was du machst / Mache, was du aufgeschrieben hast!“ Das Ziel ist letztlich, sich selbst eine sinnvolle Selbstorganisation zu erarbeiten, einen verlässlichen Schatz an Erfahrung über die Zeit zu bewahren und zugleich anderen Mitarbeitenden zugänglich zu machen. Wenn eine Doku aktuell, klar, passend und unter anderem abgestimmt sei, könne sie helfen, das Wissen um positive und negative Faktoren der Produktion zu verallgemeinern.

Im Anschluss an den Vortagsteil wurde kurzweilig und informativ durch die modernen Technika Werkzeugtechnologie/Spritzgießen, Compoundieren, Extrusion und Additive Fertigung sowie Werkstoffanalytik geführt. Hier gab es Forschung und Wissenschaft zum Beispiel zur KI und Maschinellem Lernen zum Anfassen und Begreifen. Die vielen Eindrücke und Inhalte wurden zum Ausklang der Veranstaltung beim Netzwerken im ansprechenden Ambiente der dekorierten und atmosphärisch ausgeleuchteten Hallen des AKT abgeschlossen.

Sensoren, Netzwerke und Daten. Über die Forschungsprojekte Martin Schreivogels

Sensoren, Netzwerke und Daten. Über die Forschungsprojekte Martin Schreivogels

Professor Martin Schreivogel hat seit letztem Jahr die Professur für die Grundlagen der Elektrotechnik an der Fakultät Elektrotechnik der Hochschule Schmalkalden inne. Demgemäß widmet er sich prinzipiellen Fragestellungen der Elektrotechnik, hier verstanden als ingenieurwissenschaftliche Disziplin, die sich ebenso mit der Forschung und Entwicklung wie der Produktion und Instandhaltung von elektrischen Anlagen und Geräten befasst. Um eines direkt klarzustellen: Wie an Hochschulen angewandter Wissenschaften üblich genügt sich auch die Forschung Martin Schreivogels nicht mit abstrakten, theoretischen Konstrukten, sondern sucht nach Wegen der Übersetzung von Forschung in Praxis – wie unter anderem der funktionalen Optimierung elektrochemischer Sensortechnik.

Um die Relevanz dieser Disziplin zu umreißen wird im Folgenden eine Rück- mit einer Vorschau kombiniert: Zunächst soll es um die Entwicklung kompakter Messboxen gehen, mit denen die Luftqualität, zum Beispiel im Straßenverkehr verdichteter Innenstädte, vermessen werden kann. Nach diesem Rückblick auf ein weitestgehend abgeschlossenes Projekt soll es um die Konturierung eben jener Vorhaben gehen, denen sich Professor Schreivogel an der Hochschule Schmalkalden widmen möchte.

Professor Martin Schreivogel bei seiner Antrittsvorlesung

Die Vermessung der Luft: Über die Entwicklung kompakter, vernetzter Messstationen der Luftqualität

Die öffentliche Diskussion um die gesteigerte Schadstoffbelastung an hochfrequentierten Straßen und Kreuzungen, aus der die Einrichtung von innerstädtischen Umweltschutzzonen und – in manchen Arealen – sogar Fahrverbote resultierten, liegt noch nicht allzu lange zurück. Auch wenn das Ansinnen einer gesunden, nicht von Schadstoffen belasteten Umwelt gewiss auf allgemeine Zustimmung treffen sollte, verlor die damalige Debatte aufgrund der wechselseitigen Polarisierung der diskutierenden Gruppen das Gros ihres konstruktiven Potentials. Weiterführend gerade in einem ingenieurwissenschaftlichen Horizont ist indes das öffentliche Interesse, die Schadstoffbelastung und die Effekte des Stadtverkehrs und des Verkehrsinfrastruktur auf eben diese zu eruieren und adäquate Lösungsvorschläge zu entwickeln: Wo und wie entstehen also hohe Konzentrationen an Schadstoffen und wie lässt sich ihre Ansammlung vermeiden?

Ein technisches Problem, das den Diskussionen der Konsequenzen eventuell gefährlicher Luftverschmutzung und mittel- und langfristigen verkehrsplanerischen und städtebaulichen Antworten vorausliegt, besteht in der Frage, wie wir überhaupt die Luftqualität messen. Hierbei geht es nicht nur um die Zweckmäßigkeit der verwandten Sensoren, die in Frage stehenden Variablen oder die Definition zumutbarer Grenzwerte, sondern auch um die Abwägung, wo und wann gemessen werden soll. Reicht es für eine konzise Beschreibungen der Luftverschmutzung der Verkehrswege der Innenstädte hin, an einigen wenigen, aber besonders befahrenen Straßen zu messen? Oder bedarf eine verallgemeinerbare Ermittlung ein anderes Vorgehen und die Berücksichtigung weiterer relevanter Faktoren?

Auch wenn die besondere Belastung der Anwohnenden nicht in Abrede gestellt werden soll, ist die Generalisierung der Hotspot-Messungen auf das ganze Gebiet einer Stadt mit Vorsicht zu genießen. Durch die Selektivität der Messungen werden allenfalls die Maximalwerte an einem bestimmten Punkt zu einer bestimmten Zeit ermittelt, wobei sich die Luftqualität schon an einer Nebenstraße deutlich von den Messungen am Hotspot unterscheiden kann. Die Ermittlung der allgemeinen Situation der Luftverschmutzung und Erarbeitung passender Lösungsvorschläge verlangt ein anderes Vorgehen: Um Verzerrungen zu vermeiden und ein detailliertes sowie zugleich dynamisches Bild der Verschmutzung zu zeichnen ist es eher zielführend, eine größere Menge von Messstationen weitflächig über die Stadt hinweg zu verteilen und in einem Netzwerk zu verknüpfen. So lässt sich das gezeichnete Bild differenzieren und zugleich die Bewegung der Luft, die Effekte der Architektur der Stadt auf ihre Strömung, mit in die Rechnung einbeziehen.

Smarte Boxen, vernetzte Systeme

Dem bisherigen Problem solcher Netzwerklösungen hat sich Professor Martin Schreivogel angenommen: Ihm ging es darum, eine präzise und kompakte Messstation zu entwerfen, die sich zugleich kosteneffizient ausnimmt. Gerade der hohe Preis der bislang üblichen Messstationen ließ eine Anschaffung in den hierfür notwendigen Mengen nicht zu. Um eine differenzierte Messung der Luftverschmutzung durchführen zu können, bedurfte es in einem ersten Schritt also erschwinglicher Messinstrumente, ohne dabei zu große Abstriche an der Präzision machen zu müssen. Als Referenz der Messqualität konnten dabei die Ergebnisse bisher gebräuchlichen Messstationen genommen werden.

Ein früher Entwurf einer Box für die Ermittlung der Luftgüte (Bild via Bosch)

Die ersten Versuche zeigten zum Teil signifikante Unterschiede zwischen beiden Typen an Messstationen, deren Differenz sich auch nicht über naheliegende Korrekturverfahren begradigen ließen. Das Problem bestand darin, dass sich die Sensorsignaländerung durch Feuchte- und Temperaturschwankungen oft um einiges größer ausnahmen, z.B. als das eigentliche, hierfür relevante NO2-Signal. Folglich war es die Frage, welche Ursachen die Abweichungen hatten. Auch wenn die Boxen schon aus Gründen der Kosteneffizienz möglichst einfach aufgebaut waren, sind sie dennoch hochkomplexe technische Instrumente aus verschiedenen Sensoren und Komponenten, bei denen vorab nicht ausgeschlossen werden konnte, dass sie die Verzerrung zu verantworten hatten. So könnte es z.B. durch eine Überkompensation bei der Korrektur/Verrechnung verschiedener Signale kommen. Zudem war es ebenso offen, ob ein einzelner Faktor zu den Abweichungen führte oder das Zusammenspiel mehrerer Elemente, wie die Frage, welche Rolle Einflüsse der Umgebung spielten.

Um sich dem Problem anzunähern, wurde auf Messungen in einem Klimaschrank zurückgegriffen, der gesteuerte Simulationen von Umweltbedingungen zulässt. Feststellen ließ sich dabei eine Auswirkung von Veränderungen der Temperatur und Luftfeuchte auf die Messeinheit, wobei sich der Effekt nicht direkt zeitigte, sondern etwas nachlief, wodurch sich auch die Schwierigkeiten beim Auffinden der Ursache der Verzerrung erklären ließen. Genauer formuliert waren die Ursache Feuchtigkeitsunterschiede in Luft und Sensorelektrolyt, die sich durch einen komplexen Diffusionsprozess auf das Sensorsignal auswirkten.

Um diese Verzerrung zu beseitigen, musste die Sensortemperatur in Abhängigkeit vom Wetter eingestellt werden, wodurch der Elektrolyt in Balance gehalten werden konnte und die Fehlausgaben vermieden wurden. Eine Folge war, dass die Messstationen eine Zertifizierung durch ein akkreditiertes Labor (Ineris) erhalten konnten, was wiederum ihre zukünftige Verwendung bei der statistischen Erhebung der Luftqualität erleichtern sollte. Der Gewinn an Signalstabilität hatte aber auch einen Preis: Nicht nur hatte das verbesserte Setting der Box ein höheres Gewicht, sie bedurfte auch einer eigenen Stromzufuhr, was ihren Einsatz wiederum deutlich einschränkte und damit die Möglichkeiten ihrer breiten Vermarktung limitierte. In einer neuen Generation von Modellen konnten dann Erkenntnisse komplexer mathematischer Korrekturansätze in die Konstruktion einfließen, wodurch die Geräte nicht nur deutlich leichter ausfielen, sondern ihr Betrieb auch über Solarenergie möglich wurde. Durch diese Maßnahmen ist nun die Marktförmigkeit des Produktes gewährleistet und zugleich die Möglichkeit geboten, die Luftqualität in Städten über ein Netzwerk von Messstationen ermitteln zu können.

Darstellung der gemessenen Verteilung inklusive der Qualitätsgrade (Bild via Bosch)

Die Boxen sind ein Ergebnis der Entwicklungs- und Projektleitungstätigkeit Martin Schreivogels bei Bosch, wobei er den abschließenden Prozess der Verwirklichung weiter begleiten wird, wie zuletzt an der nun beginnenden Kooperation von Bosch mit Palas deutlich wurde.[1] Zugleich diente ihm diese Arbeit als Material für seine Antrittsvorlesung, in der er auch die thematische Relevanz der Grundlagen der Elektrotechnik für Fragen der Anwendung und Umsetzung akzentuieren wollte. So biete sich im Rückgriff auf fundamentale Aspekte mitunter ein spezifischer Blick auf Probleme, aus dem dann wiederum genuine Lösungsansätze gewonnen werden können.

Die Mitgestaltung der Energiewende. Die Optimierung von Brennstoffzellen

Zielte das vormalige Projekt auf einen komplexen elektrochemischen Sensor und dessen Präzision und Funktionalität, geht es Schreivogel an der Hochschule Schmalkalden nun um die Vermessung eines elektrochemischen Systems mit Hilfe von Sensoren. Um die Funktion von Brennstoffzellen und Elektrolyseuren bei der Produktion von Wasserstoff verstehen und verbessern zu können, bedarf es eines breiten Sets an Sensoren, die die Anlagen und die Prozessabläufe überwachen. Diese offene Perspektive macht es erst möglich, eine Vielzahl von Variablen auf ihre Relevanz für die Transformation und ihre Optimierbarkeit hin zu befragen.

Die Energiewende hat durch äußere Anstöße aktuell einiges an Fahrt aufgenommen. Die Gewinnung von Wasserstoff als transportablen Energieträger und Speichermöglichkeit steht dabei noch immer vor zahllosen Herausforderungen, die durch die gerade erwünschte Geschwindigkeit im Aufbau einer Versorgungsinfrastruktur nicht geringer werden. Die zügige Umsetzung der Energiewende legt es nahe, schon in der Frühphase mit der Optimierung bereits bestehender Anlagen zu beginnen: Weil infolge des rasanten Aufbaus der Produktionsstätten die Optimalität als Ziel hinter die Realisierung rückt, entsteht hier ein Ansatzpunkt für die Forschung. Auch wenn davon auszugehen ist, dass die Technologie zur Erzeugung von Wasserstoff ein fortgeschrittenes Stadium erreicht hat ist, befinden sich Elektrolyseur- und Brennstoffzellensysteme noch immer in einer relativ frühen Entwicklungs- und Skalierungsphase. Somit bleibt die Optimierung der Effizienz und anderer Kriterien eine relevante Aufgabe, die zugleich die Energiewende vorantreibt. Im Fokus stehen somit die konkreten Anlagen, die mit Hilfe von Sensoren vermessen werden sollen, um auf diesen Messungen aufbauend konkrete Vorschläge für die Optimierung erarbeiten zu können. Ein zentraler Aspekt ist dabei die Datenverarbeitung: Die enormen Mengen an Informationen müssen strukturiert, gefiltert und evaluiert werden, um als belastbare Quelle genutzt werden zu können.

Ein Symbolbild: Die feine Verteilung von Wasserdampf

Die Region Südthüringen eignet sich schon deshalb für ein solches Vorhaben, weil es mehrere Kooperationspartner aus dem Bereich der Wissenschaft und der Wasserstoffwirtschaft gibt, mit denen ein Netzwerk von Institutionen und Anwendern der Wasserstofftechnologieforschung aufgebaut werden kann. „HySON – Institut für angewandte Wasserstoffforschung Sonneberg gemeinnützige GmbH“ und die Abteilung „Industrielle Wasserstofftechnologien Thüringen“ des Fraunhofer IKTS in Arnstadt sind zwei mögliche regionale Kooperationspartner. So ließe sich ein Zugang finden zu bestehenden Anlagen, die dann analysiert und optimiert werden können, um aus den Befunden der Einzelfälle im Anschluss generalisierende Aussagen generieren zu können. Nicht zuletzt können auch Expertisen an der Hochschule Schmalkalden und der Fakultät Elektrotechnik genutzt werden. Unter anderem befasst sich Professor Roy Knechtel intensiv mit Fragen der elektronischen Messtechnik und Sensorik.


[1] https://www.bosch-presse.de/pressportal/de/en/bosch-and-karlsruhe-based-measuring-technology-specialist-palas-team-up-for-better-air-quality-258432.html