Professor Andreas Wenzel hat die Professur für Technische Informatik/Eingebettete Systeme an der Fakultät Elektrotechnik der HSM inne. Zusammen mit seinem Team der Forschungsgruppe Eingebettete Diagnosesysteme sucht er nach praktischen Lösungen für unterschiedliche Anwendungsfelder und Fragestellungen, zum Beispiel: Welche Genauigkeit benötigt ein drahtloses Indoor-Lokalisierungssystem für den Einsatz für mobile Robotik-Anwendung? Wie lässt sich eine digitales Werkzeugbegleitbuch mit Bedienungsanleitung und Montagevideos an Werkzeugformen integrieren und im Gebrauch am besten nutzen? Welche KI-Methoden und Algorithmen sind für maschinelle Bewertung der Produktionsqualität aus Prozessdaten besonders geeignet?
Eine weitere Aufgabe, der sich das Team um Professor Wenzel in den Forschungsprojekten „Powermoduls“ und „WASABI“ in Kooperation mit der Fakultät für den Maschinenbau widmete, war die Optimierung von Spritzgussverfahren mit Hilfe eines integrierten Diagnosesystems: Lassen sich beim Herstellungsprozess bereits Daten erheben, welche die Güte des gefertigten Produkts prognostizieren können? Dies wäre ein Weg, bereits zu Beginn Fehlproduktionen zu vermeiden. Gerade weil in nahezu vollautomatisierten Produktionsprozessen weniger menschliche Handarbeit als vielmehr die Überwachung und Qualitätskontrolle der Produktion zur Optimierung gefragt ist, macht dieser Ansatz auch für die Industrie Sinn.
Zunächst galt es hierfür die messbaren Faktoren und Parameter im Prozess der Produktion auszumachen, welche für die Qualität des hergestellten Produkts entscheidend sind bzw. diese mittelbar beeinflussen. Neben dem Aspekt der sensiblen Detektion relevanter Sensordaten bestand die Herausforderung darin, die großen Mengen an Daten zu verarbeiten. Ein Mittel hierzu sind KI-unterstützte Verarbeitungsverfahren, also spezifischer Algorithmen, mit deren Hilfe die Daten geordnet, Muster erkannt und belastbare, relevante Informationen von anderen getrennt werden können. Zuletzt war die Ausgabe an die für die Produktion verantwortliche Person zu bedenken: Welche Informationen über die Entscheidung der KI mussten mitgeliefert werden, und in welchem Format? Welche Maßnahme kann der Prozessbediener im laufenden Prozess anpassen, um Fehlproduktionen zu vermeiden?
Die Tonalität von Klingen
Ein weiterer Forschungsschwerpunkt der vergangenen Jahre waren die Projekte „EMIL“ und „SMoSys“, wobei ersteres zusammen mit Prof. Beneke von der Fakultät Maschinenbau, Class und der Universität Kassel durchgeführt wurde. In SMoSys wurde dies dann im Verbund mit der Uni Kassel, der Uni Göttingen und Class weiterentwickelt. Hier waren für die technischen Lösungen eine Kombination aus Zugängen der klassischen Ingenieurswissenschaft und der Datenverarbeitung mit künstlichen neuronalen Netzwerken notwendig. Eines der größeren Verschleißteile von Landmaschinen wie Feldhäckslern sind die Klingen, mit denen die Agrargüter wie Mais geschnitten werden. Bedingt durch den Zeitdruck der Ernte müssen verschiedenen Wartungsprozesse auch kostenoptimiert gestaltet werden. Ein solcher Aspekt ist auch das Schleifen der Messer. Beide Forschungsvorhaben haben sowohl mit den Verschleiß, sowie mit der Prognose des Messerzustandes in realen Messumgebungen beschäftigt.
Fragen wie: „Wie lässt sich die Schärfe der Messer bestimmen?“ haben die beteiligten Forschungsgruppen natürlich auch beschäftigt. Hierfür wären allerlei technische Instrumente denkbar, die zwar eine Messung erlauben, aber zugleich mit einem hohen Aufwand verbunden wären. Im Rahmen des Projekts konnte zusätzlich ein praktikabler Ansatz, welcher auf bereits bestehende Gegebenheiten zurückgreift und in ihrem Aufwand minimal bleibt, erarbeitet werden. Professor Wenzel und sein Team griffen hierfür auf bereits integrierte Sensoren im Feldhäcksler zurück, welche die Schwingungen in der Nähe der Schneiden erfassen können. Wenn diese Schwingungen Auskunft über den Zustand der Klingen geben, könnte diese auch für die Entwicklung eines automatisiertes Monitoringsystems genutzt werden. Zuletzt war es wiederum die Aufgabe, aus den Daten eben jene belastbaren Signale und Muster zu extrahieren, an denen der Verschleiß der Klingen ablesbar war.
Professor Wenzel und sein Team befassen sich im Bereich der Landwirtschaft neben der Klingenschärfe der Feldhäcksler auch mit der Kartierung von Räumen für das autonome Fahren von landwirtschaftlichen Maschinen. Diese Aufgabe, die vor der Herausforderung einer eher rauen Umgebung steht, dient nicht zuletzt der optimalen Nutzung der natürlichen Ressourcen, zusätzlich werden auch Themenaspekte der Nachhaltigkeit behandelt. Für das Erkennen von Innovationspotenzialen und den Einsatz von KI-Algorithmen und eingebetteten Systemen sind intelligente Methoden sowie unterstützendes Know-how aus Sensorik, Prozessverständnis und praxisnahen Anwendungen für die Entwicklung von Lösungsansätzen für Industrie sowie Wissenschaft und Forschung von essentieller Bedeutung.